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We study a Markovian two-station tandem queueing network with impatient customers, applying it to the

financial service process in investment banks. Since the 2008 Financial Crisis, deals negotiated by the front

office are required by regulations to be reviewed internally by a control function to control risk taking, and

deals may be called off by clients at any time. We study the staffing policy of financial service operations

using the service throughput as its performance measure. Queueing networks with abandonment are common

in many industries, e.g., call centers and healthcare. Therefore, their management has received much atten-

tion. However, the resulting queueing model is a level-dependent quasi-birth-and-death (LDQBD) process -

a model considered intractable because previous numerical methods for solving LDQBD processes may not

converge to the correct value. We analyze an equivalent last-come-first-serve system to develop a recursive

relation in our LDQBD process, reducing the problem to solving quadratic matrix equations, where efficient

and exact numerical methods exist. We further simplify the analysis by combining the recursive renewal

reward theorem with Queueing and Markov chain decomposition, so that only one quadratic matrix equation

must be solved. We develop an exact numerical method to calculate the steady state probability distribu-

tion of a tandem queueing network with abandonment. We provide the first exact analysis of performance

measures of queueing networks with abandonment. For the financial service application, we find the optimal

staffing policy with the minimum number of staff required to achieve a service throughput target; we show

that if the service rate of the control function is below a cutoff point, banks can reduce the total staff needed

by assigning more staff to the front office than the benchmark rule of assigning identical capacity to both

stations. If the service rate is at or above the cutoff point, the benchmark assignment rule is close to optimal,

and assigning more staff to the control function may slightly reduce the head count required. Our results

provide insights and guidelines for financial service operations. Our method is applicable to the analysis of

queueing networks with abandonment under settings with diverse features and in various service disciplines.
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1. Introduction

We study the staffing problem of a two-station tandem queueing network with abandonment.

Tandem queueing networks, where customers need to visit several stations in sequence, abound in

the modern economy. Examples range from call centers, where customers talk to general call-takers

before being transferred to specialists (see, e.g., Gans et al. 2003), to hospital emergency rooms,

where patients are admitted by triage nurses before going on to have a number of medical tests

and procedures (see, e.g., Zayas-Cabán et al. 2013), to cost-efficient blood screenings, where a less

sensitive but inexpensive test is conducted before a more sensitive and expensive one (see, e.g.,

Bar-Lev et al. 2013). In these applications, abandonment (i.e., leaving the queue before or while

being served) is an important phenomenon. For instance, in call centers, customers may hang up

before reaching an agent. In hospital emergency rooms, patients may leave because they can obtain

treatment elsewhere; in extreme cases, they may die during the wait. And in medical tests, blood

samples need to be processed within a certain time before they perish.

There are clearly many other possibilities; in this paper we apply a tandem queueing network

with abandonment to financial service operations.

Application in Financial Service Operations: The 2008 Financial Crisis was a wake-up

call to central banks, investment banks, and banking regulators. To make banks more resilient

and restore confidence in the banking system, the governments of many countries have revised

their regulations. The more stringent now require investment banks to clearly separate business

and control functions. The control function is empowered to conduct independent assessments of

business decisions and to continuously monitor risk taking at both transaction and portfolio levels.

The following financing transaction illustrates the process. A client has mandated a bank to

arrange financing for a project. The bank’s front office will negotiate trade details, such as pricing

and loan covenants, with the client and conduct primary due diligence on the client. Once the trade

details are drafted, the transaction will be presented to the control function for an internal review,

a process including profitability analysis, risk assessment, compliance, legal documentation, etc. If
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the deal’s estimated return is commensurate to the risk portfolio of the bank, the transaction is

approved by the control function; at that point but not before, it may be executed. If not approved

by the control function, the transaction will be turned down. This process includes a tandem service

structure, with the front office acting as the upstream station and the control function acting as

the downstream station.

Clients can cancel trade requests at any time during the process for reasons such as: (i) other

banks offer more competitive pricing or faster execution; (ii) clients pull out for strategic reasons; or

(iii) uncontrollable events, like natural disasters, occur. These cancellation causes are independent

of the bank’s service operations and thus, are independent of the stage the trade is at in the

system. Furthermore, canceled deals do not affect the bank’s relationship with the client. In the

first situation, as long as the project is financed, the client is satisfied. In the other two situations,

the causes for cancelling deals are out of the bank’s control. Thus, the bank has no reasons to

associate canceled deals with any costs, such as loss of goodwill.

Of course, canceled deals will not generate profit for the bank, and in a market with abundant

liquidity, banks must compete with each other. Being able to execute a transaction quickly is a

competitive advantage, so the speed of the bank’s service process matters. This means the opti-

mization of both the staffing in the front office and the control function is critical. The two functions

need to work together to maximize their efficiency in conducting due diligence of transactions while

not undermining the rigor of review. Accordingly, the service throughput, i.e., the number of deals

reviewed by the control function, becomes a main focus of the bank. Both approved and rejected

deals are considered contributions to the bank’s risk adjusted profitability.

To develop insights into this type of service system, we model it as a two-station Markovian tan-

dem queueing network with abandonment. Deals arrive randomly at the bank, and both upstream,

front office, and downstream, control function, are modeled as multi-server queues. Clients may

make independent deal cancellation decisions at any time. We model the upstream station with an

infinite buffer. For tractability, and as is common in many applications, we consider a finite buffer
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size between the two stations. To capture a system with infinite buffer size between the stations,

we would have to allow the buffer to be so large that it has no economic effect on the system.

A bank’s competitiveness in the market determines its clients’ abandonment rate – abandonment

occurs more often when the bank’s competitors are able to offer a lower interest rate sooner. The

service level measure of interest is the system’s service throughput (ST), defined as the number of

deals successfully negotiated and reviewed, not including canceled deals.

The staffing policy in a tandem service system is composed of two elements: (i) the total number

of servers in the system, and (ii) the assignment rule that assigns the staff to the stations. We

look at and compare two assignments rules. The first is an easily calculable benchmark assignment

rule that assigns identical capacities to both stations, and the second is the optimal rule that

maximizes ST for the same staffing level. In what follows, we investigate how the corresponding

staffing policies change with the demand rate for the system.

The specific managerial questions we consider are:

1. Given that there are N ≥ 2 servers available, how can we assign them to a two-station tandem

queueing network with abandonment to maximize the ST?

2. What is the minimum number of servers needed to achieve a ST target in such a network?

Methodology: We develop an exact numerical method to derive various service level measures

of general tandem queueing systems with impatient customers. Because the abandonment rate

depends on the number of customers in the queue, the system falls into the category of level-

dependent quasi-birth-and-death (LDQBD) processes (see, e.g., Kharoufeh 2011, and references

therein), hitherto considered intractable. It is computationally formidable to solve LDQBD pro-

cesses using matrix analytic methods (see, e.g., Chapter 12 in Latouche and Ramaswami 1999), and

the numerical method may not converge to the correct value. Following a different line of thinking,

we develop a recursive relation by analyzing an equivalent last-come-first-serve system, so that the

problem boils down to solving quadratic matrix equations, and the standard techniques of matrix

analytic methods can be applied to make an exact analysis of the system. We can further simplify
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the derivation of various service level measures by combining queueing and Markov chain decom-

position (see, e.g., Abouee-Mehrizi et al. 2012, Wang et al. 2015) with a renewal reward theorem

based approach, thereby extending the recursive renewal reward technique (see, e.g., Gandhi et al.

2014) to more general Markov chains.

Broadly stated, quantitative models in general and queueing models more specifically are ana-

lyzed using one of three methods: exact solutions, approximations, or simulations. An example of

exact analysis is the closed form solution proposed by Jackson (1963) for product form queueing

networks. Both transform analysis and matrix analytic methods that are common tools in analysis

of queueing systems typically lead to exact numerical solutions. An important advantage of exact

analysis methods is that they work for all system parameter choices, including a large or small

number of servers, large or small buffer sizes, fast or slow services. An example of approximations is

Baron and Milner’s (2009) analysis of the M/M/n+M model. Common approximations methods

in queueing are fluid and diffusion approximations; both are typically more accurate for systems

with many servers or with a heavy load. Finally, analysis using simulations for queueing systems

is numerical and is often done when the system is too complex to be amenable to exact or approx-

imated solutions (i.e., operating room scheduling in hospitals). Simulations methods are typically

time consuming and provide less guarantee of accuracy (especially as the systems in question are

complex). Each method and solution has its place and offers certain advantages which must be

weighed before selecting one. Complicating the issue, some systems, for example, the M/M/n+M ,

are often analyzed using different methods; for example, a simulation may be used to demonstrate

the accuracy of an approximation.

Within this context, our paper provides the first exact analysis of a queueing network model

with abandonment. As such systems are likely too complex to have a closed form solution, several

authors suggest using approximations. For example, Zychlinski et al. (2017) use fluid approximation

to analyze tandem queues with blocking, while Armony et al. (2017) use diffusion approximation

to analyze a tandem healthcare system with flexible servers and abandonment. Our theoretical
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contribution is to develop an efficient numerical exact solution for a Markovian two-station tandem

queues with abandonment and blocking. We discuss how our solution can accommodate different

assumptions of the network and its structure and demonstrate its applications in Section 5.

Results: Using the exact numerical method developed, we provide insight into a bank’s financial

service operations with a focus on its ST performance. First, we establish an upper bound of the

system’s ST under any assignment rule. This upper bound can be shown to be a piecewise concave

function of the number of staff in the front office. Second, we define an easily calculable benchmark

assignment rule that assigns identical capacities to both stations, and prove its optimality when

the abandonment rate is small. We then search for the optimal assignment rule of N servers that

results in the highest ST over all possible assignments of N servers to both stations. We observe

that the ST as a function of the number of staff in the front office is concave; hence, the optimal

assignment is unique.

To answer the first managerial question, we perform an exhaustive search over all possible assign-

ments of N servers in two stations, to find the optimal assignment with the highest ST. Next,

under the assumption of a fixed head count, N , we compare the optimal assignment rule with

the benchmark assignment rule. We observe three operational regions in the downstream control

function’s service rate µ2. When µ2 is at a critical cutoff point, the benchmark assignment rule is

optimal. When µ2 is lower than the cutoff point, the optimal assignment rule assigns more servers

to the upstream front office, improving the system’s ST by up to 9% in our numerical results.

When µ2 is greater than the cutoff point, the benchmark assignment rule deviates slightly from

the optimal one and its ST is close to that of the optimal assignment rule.

To answer the second managerial question, we find the minimum total number of servers needed

to achieve a given percentage (we use 95%) of the ST upper bound, under both the optimal and

the benchmark assignment rules. We compare the staffing policies based on two assignment rules,

again finding three operational regions in the control function’s service rate. When µ2 is at a cutoff

point, the staffing policy based on the benchmark assignment rule is optimal. When µ2 is lower
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than the cutoff point, the optimal assignment rule can save the bank a significant number of servers,

compared to the benchmark assignment rule, by assigning more staff to the front office. When µ2

is greater than the cutoff point, the optimal assignment rule can save a few servers compared to

the benchmark assignment rule (by assigning more to the downstream control function). However,

this saving seems less significant.

For firms operating a tandem queueing system with abandonment, our numerical results provide

useful guidelines. When the control function’s processing rate µ2 is at or above the cutoff point,

the benchmark assignment rule is almost optimal and provides great operational simplicity. When

µ2 is below this cutoff point, it is critical for the firms to identify the optimal assignment rule, as

this will save a significant amount of staffing cost.

We note that our methodology enables derivations of various relevant service level measures

in similar queueing networks applications with diverse features, like different abandonment rates

during waiting and service, direct departure from the upstream station, external arrival at the

downstream station, cross trained servers, etc. We discuss the applicability of the methodology in

other real-world problems in Section 5.

Brief Literature Review: Staffing problems in service systems, such as call centers, have been

studied extensively in the literature, but most previous work has either focused on network sys-

tems ignoring abandonment (see, e.g., Chen and Yao 2001, and references therein) or considered

abandonment in a single-stage queue. For example, queueing models with abandonment have been

modeled using stochastic calculus (see, e.g., Boxma et al. 2014, and references therein), and asymp-

totic analysis (see, e.g., Ward and Glynn 2005, Baron and Milner 2009, and references therein).

This work focuses on single-stage queueing systems that are not capable of representing the com-

plex queueing systems in today’s service industry. Staffing a single-stage queue only requires the

total number of servers, but staffing a queueing network requires assigning these servers to different

stations.

Armony et al. (2017) use diffusion approximation to study a healthcare system with an upstream

Intensive Care Unit (ICU) and a downstream Step Down Unit (SDU), where critical patients
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arriving at the ICU may abandon and the SDU has no waiting room for semi-critical patients who

have been served by the ICU. In this application, the ICU beds are flexible, so semi-critical patients

can be served in ICU, but critical patients have preemptive priority over semi-critical customers

in the ICU. We will show that our model can be modified to cover the ICU-SDU system and our

method can be directly applied to an exact analysis of their system.

The paper proceeds as follows. In Section 2, we define the model and provide some preliminary

information. We demonstrate our method of developing a recursive relation in Section 3, using the

busy period of a multi-server queue with impatient customers, where customers abandon during

waiting or service, as an example. The staffing problems and managerial insights of banks’ finan-

cial service operations based on the numerical results are discussed in Section 4. We discuss the

applicability of our model to other real-world problems in Section 5. All proofs not in the text are

in the Appendix.

2. Model

In this section, we define the Markov chain (MC) of our model, discuss notation, explain the

distribution of the number of customers at Station 1, and construct a level-dependent one-step

transition matrix for the MC.

2.1. Model Description and Preliminaries

We consider a two-station tandem queue with Station 1 as the upstream station and Station 2 as

the downstream one as depicted in Figure 1. Each station is a multi-server queue. Let ni be the

number of servers at Station i, and µi be the service rate of Station i’s servers, for i= 1,2. Similar

to Reed and Yechiali (2013), we assume Station 1 has a waiting room of infinite size, and Station

2 has a waiting room with m<∞ spots. Note that by letting m approach ∞, we can approximate

a general two-station tandem queue with infinite waiting rooms in both stations.

Customers arrive at Station i following a Poisson process with rate λi, for i = 1,2. We call

customers in Station i, whether waiting or receiving service, Station i customers, for i= 1,2. Upon

a customer’s arrival at Station 1, if any of the n1 servers of Station 1 is free, the arriving customer
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immediately enters service. Otherwise, she waits at Station 1. Customers who finish service in

Station 1 go to Station 2 with probability (w.p.) p. When there is either an external arrival or

an arrival at Station 2 from Station 1, if Station 2 has a server available, the customer enters

service immediately. Otherwise, if all servers are busy but Station 2’s waiting room has some spots

available, she will wait there for a Station 2 server; if the waiting room is full, this customer balks

(i.e., leaves without joining the waiting room).

The customers are considered impatient. We model customers’ patience in Station i’s waiting

room, Θiw, as an exponentially distributed random variable with parameter θiw, for i= 1,2. Once

a customer’s waiting time passes her patience threshold Θiw, she abandons (i.e., leaves without

being served). Moreover, customers may abandon while in service. Similar to customer patience in

the waiting room, we model customer patience during service in Station i, Θis, as an exponentially

distributed random variable with parameter θis, for i= 1,2. Once a customer’s service time passes

Θis, she abandons service in Station i.

Here, we define different abandonment rates from different parts of the tandem queueing system

to allow flexibility in modeling the abandonment behavior. When θ1s = θ2s = θ1w = θ2w = 0, all

customers have infinite patience, and they wait until obtaining service, so the system operates

like a tandem queue without abandonment. Then, the departure process from Station 1 is Poisson

in stationarity (see, e.g., Adan and Resing 2001), and this makes the tandem queueing system a

relatively simple Jackson network. When θ1s = θ2s = 0 and θ1w = θ2w =∞, this tandem queueing

system operates as a loss system with no waiting room - an arriving customer leaves immediately

if no servers are available, as represented by a finite two-dimensional MC whose exact solution is

straightforward.

Let Qi (t), i= 1,2 be the random variable denoting the total number of customers in Station i

at time t. Given the number of servers at both stations, the process (Q1 (t) ,Q2 (t)) is a continuous

time MC. Let πq1,q2 denote the steady state probability that this MC is in state (q1, q2). Figure 2

illustrates the MC of the tandem queueing system with n1 = n2 = 2 and m= 1.
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Figure 1 Tandem queueing system with abandonment and balking.
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Figure 2 The (q1, q2) MC of the general tandem queueing system with n1 = n2 = 2 and m= 1.

Note that the assumption of a finite waiting room with size m<∞ at Station 2 is essential to

form a one-dimensional infinite MC, like the one in Figure 2, instead of a more difficult to analyze

two-dimensional infinite MC.

For convenience, we call states {(q1, q2)| q1 = i} states at level i and let ηi =
∑n2+m

q2=0 πi,q2 be the

steady state probability that the system is at level i of the MC. We call states {(q1, q2)| q2 = j} in

the MC states at column j, and we let κj =
∑∞

q1=0 πq1,j be the steady state probability that the

system is at column j of the MC. Because Station 2 has a finite waiting room, as illustrated in

Figure 2, the MC has a finite number of columns and an infinite number of levels.

2.2. Distribution of the Number of Station 1 Customers

Deriving the distribution of Station 1 customers Q1 is immediate from the following observation.
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Observation 1 From an outside observer’s point of view, Station 1 is a multi-server queue with

impatient customers abandoning the waiting room at rate θ1w and abandoning service at rate θ1s.

Observation 1 can be understood from Figure 2; every state (q1, q2) of the MC has a transition rate

of λ1 to the upper level q1+1, and a transition rate of θ1wmax(q1 −n1,0)+(µ1 + θ1s)min (q1, n1) to

the lower level q1−1; both are independent of q2. We can now write the detailed balance equations

between two adjacent levels as

λ1

n2+m∑
q2=0

πq1−1,q2 = (θ1wmax(q1 −n1,0)+ (µ1 + θ1s)min (q1, n1))

n2+m∑
q2=0

πq1,q2 for q1 = 1,2, . . . . (1)

Substituting the probability of having i Station 1 customers in the system ηi =
∑n2+m

q2=0 πi,q2 into

(1) results in the balance equations of a multi-server queue with impatient customers abandoning

the waiting room at rate θ1w and abandoning service at rate θ1s. The steady state probability

distribution of such system is

ηi = η0

i∏
k=1

λ1

θ1wmax(k−n1,0)+ (µ1 + θ1s)min (k,n1)
for i= 0,1,2, . . . , (2)

where

η0 =

(
1+

∞∑
i=1

i∏
k=1

λ1

θ1wmax(k−n1,0)+ (µ1 + θ1s)min (k,n1)

)−1

.

Note that a special case of the multi-server queue with impatient customers, where customers do

not abandon during service, i.e., θ1s = 0, has been studied recently in the asymptotic region when

the arrival rate and the number of servers grow to infinity; see, e.g., Garnett et al. (2002), Whitt

(2004), and Baron and Milner (2009).

Deriving the distribution of the number of Station 2 customers Q2 is more complicated than

deriving the distribution of Q1. In Section 2.3, we first construct the one-step transition matrix

- a preliminary step in the Matrix Analytic Method, a building block of our method. We then

introduce our method by characterizing the distribution of Q2, i.e., P {Q2 = j}= κj, as an example

in Section 3. In Appendix A1.6, we establish that our method works for a broad range of service

level measures.
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2.3. One-step Transition Matrices

Let v (q1, q2) be the total rate at which the system leaves state (q1, q2). Then,

v (q1, q2) = λ1 +λ2 +µ1min(q1, n1)+µ2min(q2, n2)+ θ1smin(q1, n1)+ θ1wmax(q1 −n1,0)

+θ2smin(q2, n2)+ θ2wmax(q2 −n2,0) for q1 = 0,1, . . . and q2 = 0,1, . . . , n2 +m, (3)

After spending an exp (v (q1, q2)) time in state (q1, q2), the system will move to one of the adjacent

states with a certain probability. Consider state (3,1) in Figure 2, for example. After spending an

exp (λ1 +2µ1 +µ2 +2θ1s + θ1w + θ2s) time in this state, the system will move to state (4,1), if an

arrival occurs at Station 1, w.p. λ1
v(3,1)

; state (3,2), if an arrival occurs at Station 2, w.p. λ2
v(3,1)

; state

(3,0) if a Station 2 customer finishes service, w.p. µ2
v(3,1)

, or abandons, w.p. θ2s
v(3,1)

; state (2,2) if a

Station 1 customer finishes service and needs service from Station 2, w.p. 2pµ1
v(3,1)

; or state (2,1) if any

Station 1 customer finishes service and leaves directly, w.p. 2(1−p)µ1
v(3,1)

, or abandons, w.p. 2θ1s+θ1w
v(3,1)

.

These are the one-step transition probabilities.

We now express the one-step transition probabilities in matrix form. Note that transitions from

level q1 can only bring the system into levels q1 +1 (after arrivals), q1 (after service completion at

or upon abandonment from Station 2), or q1−1 (after service completion at or upon abandonment

from Station 1). Let matrices A
(q1)
0 , A

(q1)
1 , and A

(q1)
2 represent, respectively, the one-step transition

matrices at level q1 (q1 = 0,1,2, . . .) due to (i) arrivals, (ii) service completion at or abandonment

from Station 2, (iii) service completion at or abandonment from Station 1. Also note that at any

level q1, there are n2+m+1 states, so the transition matrices from level q1 (to levels q1− 1, q1, or

q1 +1) are all of size (n2 +m+1)× (n2 +m+1). In any matrix X, we use [X]ij to represent the

entry in its ith row and jth column. Then,

[
A

(q1)
0

]
ij
=


λ1

v(q1,i−1)
if i= j

0 otherwise

,
[
A

(q1)
1

]
ij
=



µ2 min(i−1,n2)+θ2s min(i−1,n2)+θ2w max(i−1−n2,0)

v(q1,i−1)
if i− 1 = j

λ2
v(q1,i−1)

if i+1= j

0 otherwise

,
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and

[
A

(q1)
2

]
ij
=



(1−p)µ1 min(q1,n1)+θ1s min(q1,n1)+θ1w max(q1−n1,0)

v(q1,i−1)
if i < n2 +m+1 and i= j

pµ1 min(q1,n1)

v(q1,i−1)
if i < n2 +m+1 and i+1= j

µ1 min(q1,n1)+θ1s min(q1,n1)+θ1w max(q1−n1,0)

v(q1,i−1)
if i= n2 +m+1 and i= j

0 otherwise

.

Note that A
(q1)
0 , A

(q1)
1 , and A

(q1)
2 are all one-step transition probability matrices from level q1,

so the sum of each row of all three matrices is 1; i.e., A
(q1)
0

−→
1 +A

(q1)
1

−→
1 +A

(q1)
2

−→
1 =

−→
1 , where

−→
1 is

a one column vector of size n2 +m+1.

3. Level-Dependent Quasi-Birth-and-Death Process

The analysis for Station 2 customers is challenging because the MC in Figure 2 is a level-dependent

quasi-birth-and-death (LDQBD) process. The common approach to solving LDQBD processes

involves deriving the first passage probability matrix from level q1 to level q1 − 1, G(q1), where[
G(q1)

]
ij
represents the probability that given the MC starts from state (q1, i), it first reaches level

q1−1 at state (q1 − 1, j), for q1 = 0,1,2, . . .. G(q1) needs to be derived iteratively from G(q1+1) using

G(q1) =
(
I−A

(q1)
1 −A

(q1)
0 G(q1+1)

)−1

A
(q1)
2 (4)

and G(∞) is approximated by G(M) for a large M . This approach is, as Latouche and Ramaswami

(1999) put it, “somewhat arbitrary.” In this section, we establish a recursive relation for G(q1)

for q1 > n1, so that G(q1) can be expressed as the solution of a quadratic matrix equation. This

derivation leads to one of our paper’s main contributions: developing a feasible way to solve an

LDQBD process, hitherto considered intractable.

In Section 3.1, we use the example of the first passage time of the MC to level n1, starting from

level n1+1, to introduce our method. Then, in Section 3.2, we show how this method can be used

to derive G(q1) for q1 >n1.
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3.1. Method of Analysis: Creating a Recursive Relation

Let T (q1) denote the time periods after the MC leaves level q1 until it reaches level q1 − 1, for

q1 >n1. Then, T
(n1+1) represents the time period the MC stays in the subspace {(q1, q2) |q1 >n1}.

Let LT (n1+1) denote the length of T (n1+1). Let FT (n1+1) (x) be the cumulative distribution function

of LT (n1+1) and L̃T (n1+1) (s) be its Laplace Transform (LT). While L̃T (n1+1) (s) has been derived by

Jouini and Roubos (2014), we derive it here to illustrate the general idea of our method: generating

a recursive relation using the Last-Come-First-Serve scheduling rule in the system. Importantly,

due to the memoryless property of the exponentially distributed patience, the order of service does

not change the length of T (n1+1).

Proposition 1. The Laplace Transform of LT (n1+1), L̃T (n1+1) (s), is the solution of

L̃T (n1+1) (s) =
θ1w +n1 (µ1 + θ1s)

λ1 + θ1w +n1 (µ1 + θ1s)+ s
(5)

+
λ1

λ1 + θ1w +n1 (µ1 + θ1s)+ s

∫ ∞

0

P {Θ1w ≤LT (n1+1) |LT (n1+1) = x}e−sxdFT (n1+1) (x)

+
λ1

λ1 + θ1w +n1 (µ1 + θ1s)+ s

∫ ∞

0

P {Θ1w >LT (n1+1) |LT (n1+1) = x}e−sxL̃T (n1+1) (s)dFT (n1+1) (x) .

Proof of Proposition 1 Say a T (n1+1) starts; i.e., the MC is at level n1 + 1. All servers at

Station 1 are busy and a customer (call her “A”) is waiting. After an exp (λ1 + θ1w +n1 (µ1 + θ1s))

time interval (with Laplace Transform λ1+θ1w+n1(µ1+θ1s)

λ1+θ1w+n1(µ1+θ1s)+s
), three events can happen at Station 1:

arrival, abandonment, or completion 1. If the next event is abandonment or completion 1 (w.p.

θ1w+n1(µ1+θ1s)

λ1+θ1w+n1(µ1+θ1s)
), the MC enters level n1, and the T (n1+1) ends (the LT is 1 in this case). Therefore,

in this instance, the first line in (5) gives the LT of the T (n1+1).

If the next event is an arrival (w.p. λ1
λ1+θ1w+n1(µ1+θ1s)

), a new customer (call her “B”) joins the

queue at Station 1, so there are now two customers waiting for Station 1. We use a technique

similar to that used to derive the busy period of an M/G/1 queue, and we use the Last-Come-First-

Serve rule to establish a recursive relation. According to the Last-Come-First-Serve rule, customer

A will be considered when no other customers are waiting. We imagine putting customer A into a

separate room and temporarily ignoring her until no other customers are waiting. The important
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observation is that the time period from now (customer B is the only waiting customer in the queue

when customer A is ignored) until no other customers are waiting has exactly the same distribution

as T (n1+1), which also starts with one customer waiting and ends when no other customers are

waiting. We call this time period the T (n1+1) initiated by customer B.

When the T (n1+1) initiated by customer B ends, we need to consider customer A again. At this

moment, customer A may have abandoned, if the length of the T (n1+1) initiated by customer B is

longer than customer A’s patience. If so, the waiting room is empty, and the T (n1+1) ends. Note

that the probability of customer A staying until the end of the T (n1+1) initiated by customer B is

correlated with the length of this T (n1+1). Thus, in this case, the Laplace Transform can be calculated

as
∫∞
0

P {Θ1w ≤LT (n1+1) |LT (n1+1) = x}e−sxdFT (n1+1) (x). This gives the second line of (5).

Alternatively, if the length of the T (n1+1) initiated by customer B is less than customer A’s

patience, she will be waiting at Station 1. From the memoryless property of Markovian systems, we

know the time from now until no customers are waiting is distributed as a T (n1+1). In this case,

the LT is
∫∞
0

P {Θ1w >LT (n1+1) |LT (n1+1) = x}e−sxL̃T (n1+1) (s)dFT (n1+1) (x), giving the expression

in the third line of (5). This completes the proof. �

We know that P {Θ1w >LT (n1+1) |LT (n1+1) = x}= e−θ1wx and P {Θ1w ≤LT (n1+1) |LT (n1+1) = x}=

1− e−θ1wx, so simplifying (5) gives

Corollary 1. The Laplace Transform of LT (n1+1), L̃T (n1+1) (s), is the solution of

L̃T (n1+1) (θ+ s) =
(θ1w +n1 (µ1 + θ1s)+ s) L̃T (n1+1) (s)− θ1w −n1 (µ1 + θ1s)

λ1L̃T (n1+1) (s)−λ1

, (6)

with the boundary condition L̃T (n1+1) (0) = 1.

We could solve (6) for L̃T (n1+1) (s), but it is out of the scope of this paper, so we no longer discuss

it.

From Observation 1, we know that the T (n1+1) is distributed in the same way as the busy period

of an M/M/1+M system with arrival rate λ1, service rate θ1w +n1 (µ1 + θ1s), and abandonment

rate θ1w. Boxma et al. (2014) gives E [LT (n1+1) ] as (see, e.g., (3.20) of Boxma et al. 2014):

E [LT (n1+1) ] =
∞∑
k=0

λk
1

(n1 (µ1 + θ1s)+ θ1w) (n1 (µ1 + θ1s)+ 2θ1w) · · · (n1 (µ1 + θ1s)+ (1+ k)θ1w)
. (7)
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Note that L̃T (n1+1) (θ1w) can be considered the probability of having no arrivals from a Poisson

process with rate θ1w during T (n1+1) (see, e.g., p59, Buzacott and Shanthikumar 1993). From the

relation of the Poisson process and the exponential distribution, this is also the probability that

an exp (θ1w) random variable is greater than the length of T (n1+1), P {Θ1w >LT (n1+1)}. Following

(6), we have

Corollary 2. The probability that a customer’s patience exceeds the length of T (n1+1) is

P {Θ1w >LT (n1+1)}=
θ1w +n1 (µ1 + θ1s)

λ1

− 1

λ1E [LT (n1+1) ]
, (8)

where E [LT (n1+1) ] is given in (7).

Thus, we can substitute (7) into (8) to calculate P {Θ1w >LT (n1+1)}= L̃T (n1+1) (θ1w), which is,

of course, identical to L̃T (n1+1) (θ1w) calculated by using (8) in Jouini and Roubos (2014) or by

iterating (3.17) in Boxma et al. (2014).

An important observation is that the analysis to create the recursive relation in Proposition 1

can be applied to other metrics of interest. For example, considering E [LT (n1+1) ], we get

E [LT (n1+1) ] =
1

λ1 + θ1w +n1 (µ1 + θ1s)

+
λ1

λ1 + θ1w +n1 (µ1 + θ1s)

(∫ ∞

0

xP {Θ1w ≤LT (n1+1) |LT (n1+1) = x}dFT (n1+1) (x)

+

∫ ∞

0

(x+E [LT (n1+1) ])P {Θ1w >LT (n1+1) |LT (n1+1) = x}dFT (n1+1) (x)

)
,

the simplification of which gives

E [LT (n1+1) ] =
1

λ1 + θ1w +n1 (µ1 + θ1s)
+

λ1

λ1 + θ1w +n1 (µ1 + θ1s)
(E [LT (n1+1) ] +P {Θ1w >LT (n1+1)}E [LT (n1+1) ]) .

(9)

Of course, (9) is equivalent to (8). Moreover, the fact that (9) does not consider the correlation

between the probability of customer A staying until the end of the T (n1+1) initiated by customer

B and the length of this T (n1+1) logically follows because expectations are additive, even among

correlated random variables.
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3.2. First Passage Probability Matrix G(q1)

Using the method for creating a recursive relation, we can solve for the first passage probability

matrix G(n1+1) from:

Proposition 2. The first passage probability matrix during T (n1+1), G(n1+1), satisfies

G(n1+1) =A
(n1+1)
2 +

(
A

(n1+1)
1 +P {Θ1w ≤LT (n1+1)}A(n1+1)

0

)
G(n1+1)+P {Θ1w >LT (n1+1)}A(n1+1)

0

(
G(n1+1)

)2
,

(10)

where P {Θ1w >LT (n1+1)} is given by Corollary 2.

Further, it is straightforward to generalize Proposition 2 to G(n1+i), i= 1,2, . . ..

Corollary 3. The first passage probability matrix during T (n1+i), G(n1+i), satisfies

G(n1+i) = A
(n1+i)
2 +

(
A

(n1+i)
1 +P {Θ1w ≤LT (n1+i)}A(n1+i)

0

)
G(n1+i) +P {Θ1w >LT (n1+i)}A(n1+i)

0

(
G(n1+i)

)2
for i= 1,2, . . . . (11)

where

P {Θ1w >LT (n1+i)}=
iθ1w +n1 (µ1 + θ1s)

λ1

− 1

λ1E [LT (n1+i) ]

and

E [LT (n1+i) ] =
∞∑
k=0

λk
1

(n1 (µ1 + θ1s)+ iθ1w) (n1 (µ1 + θ1s)+ (i+1)θ1w) · · · (n1 (µ1 + θ1s)+ (i+ k)θ1w)
for i= 1,2, . . . .

The Last-Come-First-Serve rule provides an explicit quadratic matrix equation for each

G(n1+i). Although closed form solutions for quadratic matrix equations are hard to obtain,

we have an efficient and exact numerical method to derive G(n1+i) from (11). Note that(
A

(n1+i)
2 +

(
A

(n1+i)
1 +P {Θ1w ≤LT (n1+i)}A(n1+i)

0

)
+P {Θ1w >LT (n1+i)}A(n1+i)

0

)−→
1 =

−→
1 , so we can

consider A
(n1+i)
2 , A

(n1+i)
1 + P {Θ1w ≤LT (n1+i)}A(n1+i)

0 and P {Θ1w >LT (n1+i)}A(n1+i)
0 as one-step

transition matrices falling under the matrix analytic methods, while G(n1+i) can be derived using

Algorithm 8.1 in Latouche and Ramaswami (1999). This numerical algorithm is efficient and exact,

and is given in Appendix A2.4. Once G(n1+i), i= 1,2, . . ., is calculated, G(q1) for q1 ≤ n1 can be

derived using (4).
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We note that Corollary 3 is one of our main contributions. Compared to the iterative approxi-

mation using (4), our method greatly improves the accuracy of the derivation of G(q1).

Let π
(q1)
i denote the steady state probability the MC is in state (q1, i), and let π(q1) =[

π
(q1)
0 , . . . , π

(q1)
n2+m

]
denote the steady state probability vector the MC is at level q1. When G(q1) is

derived, we can apply the results in Section 12.1 in Latouche and Ramaswami (1999) to numerically

solve π(q1) from

π(q1) = π(q1−1)A
(q1−1)
0

(
I −A

(q1)
1 −A

(q1)
0 G(q1+1)

)−1

normalized by

π(0)

∞∑
n=0

n∏
k=1

A
(k−1)
0

(
I −A

(k)
1 −A

(k)
0 G(k+1)

)−1−→
1 = 1.

However, no easily computable analytic expression is available for the infinite sum in the normal-

ization step. The standard practice is to truncate the MC at level M and solve

π(0)

M∑
n=0

n∏
k=1

A
(k−1)
0

(
I −A

(k)
1 −A

(k)
0 G(k+1)

)−1−→
1 = 1.

Let π(0) (M) denote the solution of this normalization equation truncated at level M . We can

choose an M large enough so that
∣∣π(0) (M +1)−π(0) (M)

∣∣< ϵ, where |•| is the L2-norm and ϵ is

the error tolerance. If we choose a smaller ϵ, the accuracy of this method improves. However, the

computation of G(q1) up to level M requires a large computational effort.

In Appendix A1, we further simplify the analysis of Station 2 customers by showing that only

G(n1+1) is required for the exact derivation of the service level measures of Station 2 customers.

The idea is to consider every time the system moves from level n1 to level n1 + 1 as a renewal

point. We call the time period between two renewal points a cycle. Using renewal reward theorem

(see, e.g., Ross 2007), we can write any measures of interest as the expected reward earned in a

cycle divided by the expected cycle length; see, e.g., Theorem A1 in Appendix A1.5. Then, by

selecting corresponding reward functions, we can derive other service level measures of interest,

like the abandonment and balking rates from Station 2; see, e.g., Appendix A1.6.
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4. Numerical Results and Insights

We now consider the staffing problem in banks’ tandem financial service system. This is a special

case of our general model presented in Section 2, when (i) all customers request service from both

stations i.e., p = 1; (ii) there are no external arrivals at Station 2, i.e., λ2 = 0; and (iii) deals’

abandonment rate stays the same in different parts of the system, i.e., θ1s = θ1w = θ2s = θ2w = θ.

A staffing policy in a tandem queueing system is composed of two elements: (i) the total number

of servers in the system N and (ii) the assignment rule that assigns these servers to the two

stations. For a total number of servers, N ≥ 2, suppose n1 (1≤ n1 ≤N − 1) servers are assigned to

Station 1, and the rest, n2 =N −n1, are assigned to Station 2. When no confusion arises, we use

n1, instead of (n1, n2), to represent an assignment rule.

Recall that by using a large waiting room of size m in Station 2, we can derive the performance

of a tandem queueing system under any staffing policy with infinite waiting room in both stations.

Note that when other parameters are kept the same, a larger waiting room (of size m) will lead

to less balking at Station 2. When m approaches ∞, balking at Station 2 will diminish. Thus, we

can evaluate a general tandem queueing system with an infinite waiting room by choosing an m

large enough to ensure the balking rate at Station 2 is smaller than a selected error tolerance.

In the following discussion, we use an error tolerance of 10−10. Because of deals’ abandonment, it

is sufficient to use a moderate m (˜200 in all our numerical tests) to ensure the balking rate at

Station 2 is less than this error tolerance.

We consider two questions:

1. Given that there are N ≥ 2 servers available, how can we assign them to a two-station tandem

queueing network with abandonment to maximize the service throughput (ST)?

2. What is the minimum number of servers needed to achieve a ST target in such a network?

In our numerical study, we first focus on the assignment rule when the total number of servers

in the system N is fixed. In Section 4.1, we establish an upper bound of the system’s ST under

any assignment rule n1, introduce an easily calculable benchmark assignment rule, and identify the



20

optimal assignment rule. We then compare these two assignment rules to gain insights into bank’s

financial service operations. Specifically, in Section 4.2, we study how the difference between these

two assignment rules changes with a bank’s competitiveness or the downstream control function’s

processing rate. Finally, in Section 4.3, we investigate the staffing policy and compare the numbers

of servers needed under the optimal and the benchmark rules to guarantee 95% of the ST upper

bound.

4.1. Staffing Policies and Assignment Rules

We first establish an upper bound of the ST in an M/M/n model with arrival rate λ, service rate

µ, and abandonment rate θ. On the one hand, if the multi-server queue has abundant servers,

so that any arriving deal immediately enters service without wait, this deal will go through with

probability (w.p.) µ
µ+θ

(abandon during service w.p. θ
µ+θ

). Then the ST is λ µ
µ+θ

. On the other hand,

if the M/M/n model has abundant demand, so that all servers’ utilization is 100%, the system ST

is at most nµ. Thus, the ST of the system under demand λ and n servers is bounded from above

by the above two cases.

Proposition 3. An upper bound of the ST in a multi-server queue with abandonment is

min
(
λ µ

µ+θ
, nµ

)
.

By applying Proposition 3 to the bank’s tandem queueing system, we get an upper bound of the

ST for any assignment rule n1 under N ≥ 2 servers, TP (n1).

Corollary 4. The upper bound of the ST under assignment rule n1 in the bank’s tandem

queueing system with abandonment is TP (n1) =min
(

µ2
µ2+θ

min
(
λ1

µ1
µ1+θ

, n1µ1

)
, (N −n1)µ2

)
.

By conditioning on the value of n1, we can show that the ST upper bound TP (n1) is a piecewise

concave function of n1. In the best case scenario, when each station has abundant servers to

accommodate the arrival rate λ1, the upper bound in Corollary 4 becomes λ1
µ1

µ1+θ
µ2

µ2+θ
, and this

serves as a ST upper bound for any staffing policy.

We further note that in the same station, deals in the waiting room have a higher abandonment

probability than deals in service, because the former may abandon during both the waiting and
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service processes; i.e., they incur an extra probability of abandonment than those in service. This

means that starting to serve deals sooner reduces the abandonment probability towards the lower

bound, e.g., θ
µ1+θ

at Station 1, but not further. Hence, adding servers to the station where most

deals enter service immediately upon arrival may not increase the service completion rate all that

much.

Given the total number of servers N and service rates in the two stations (µ1 & µ2), we define

ṅ1 = µ2N/ (µ1 +µ2) as the fractional benchmark assignment rule, under which Stations 1 and 2

have identical capacities µ1µ2N/ (µ1 +µ2). Note that ṅ1 is independent of θ and may be fractional.

To avoid the fractional server assignment, we focus on the benchmark assignment rule (BnchAR)

[ṅ1] = argmaxn1∈{⌊ṅ1⌋,⌈ṅ1⌉}min(n1µ1, (N −n1)µ2), where ⌊•⌋ and ⌈•⌉ are floor and ceiling func-

tions, respectively. We call [ṅ1]µ1 the benchmark capacity (BnchCap). We have the following

intuitive proposition for the BnchAR when θ→ 0+.

Proposition 4. In a tandem queueing system with abandonment rate θ→ 0+, the BnchAR is

the optimal assignment rule, and the maximum ST is min(λ1, [ṅ1]µ1, (N − [ṅ1])µ2).

We next investigate the ST for assignment rules under a given total number of servers, N ≥ 2. On

the one hand, when n1 is small (i.e., n2 =N−n1 is large), Station 2 can start the review process for

most deals immediately, but many deals abandon from Station 1, during either waiting or service,

before reaching Station 2. In this case, we can assign some of Station 2’s servers to Station 1 to

increase the system’s ST. On the other hand, when n1 is large (i.e., n2 is small), Station 1 is able to

capture many deals before they abandon, but Station 2 does not have enough capacity to handle

all the input from Station 1, causing many deals to abandon from Station 2; consequently, Station

1’s work on these deals is wasted. Therefore, it is better to move some servers from Station 1 to

Station 2 to assure a higher ST. From this discussion, we see that the ST is an increasing function

of n1 when n1 is small and a decreasing function of n1 when n1 is large – i.e., close to N .

From communicating with our contact in an international investment bank, we conclude that

reviewing deals takes less time than negotiating them. Thus, we assume that the downstream
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Figure 3 Throughput and throughput upper bound as functions of n1 ∈ {1, . . . ,N − 1} when λ1 = 22.5, N = 30,

θ= 0.5, and µ2 ∈ {1, 2, and 3}.

control function works at least as fast as the upstream front office whose service rate is normalized

to 1, i.e., µ2 ≥ µ1 = 1, throughout our numerical studies.

Let TP (n1) denote the ST of this tandem queueing system under assignment rule n1. Using the

method described in Section 3 and Appendix A1, for a series of systems with n1 = 1,2, . . . ,N − 1

servers at Station 1, we calculate TP (n1) and find the optimal assignment rule (OptAR) n∗
1 =

argmax1≤n1≤N−1 TP (n1) using enumeration. Figure 3 records the ST upper bound TP (n1) and

the ST TP (n1) as functions of n1, and the OptAR n∗
1, for λ1 = 22.5, N = 30, θ = 0.5, and µ2 ∈

{1, 2, and 3}. We see from Figure 3 that our intuition is valid: the ST TP (n1) is, in fact, concave

in n1 and has a global maximum. The concavity of the ST holds for all other parameter settings

we test. We summarize the observation below.

Observation 2 For any fixed λ1, µ1, µ2, θ, and N ≥ 2, our numerical studies suggest that the ST

TP (n1) is an initially increasing and then decreasing concave function of n1, for n1 = 1, . . . ,N −1.

In the following sections, we compare the OptAR n∗
1 to the BnchAR [ṅ1] to provide intuitions

and guidelines for staffing in tandem queueing systems with impatient clients. These intuitions and

guidelines were not previously available because of a lack of exact methods for such systems.

4.2. Optimal Assignment Rule vs. Benchmark Assignment Rule

In this section, we compare the OptAR n∗
1 to the BnchAR [ṅ1], under a fixed head count N and

different (i) bank competitiveness as captured via θ and (ii) service rate, µ2, for the downstream

control function. Recall that when the bank is relatively more competitive in the market, deals



23

abandon at a lower rate, i.e., θ becomes smaller. The opposite is also true. While the front office’s

deal negotiating rate µ1 is relatively stable and it is difficult to speed up or slow down the deal

negotiation process, the control function’s deal reviewing rate µ2 may be improved by simplifying

the review procedure or worsened by adding new regulations which complicate the review process.

Similar to the discussion in Section 4.1, when θ > 0, Station 1’s capacity has two conflicting effects

on Station 2; both dictate the differences between the OptAR and the BnchAR. For an arrival to

contribute to the system’s ST, Station 1 must complete the deal negotiation before abandonment

and pass it on to Station 2 as input, and Station 2 must review the deal before abandonment.

On the one hand, for Station 1 to capture enough deals before they abandon and thus maintain

an adequate input rate at Station 2, there is pressure to assign more servers to Station 1. We

call this the deal-capturing effect. On the other hand, part of Station 1’s capacity is wasted on

deals that eventually abandon from Station 2. Thus, there is a tendency to move servers from

Station 1 to Station 2 to increase Station 2’s capacity and reduce this undesirable abandonment.

We call this the deal-loss effect. When θ increases, the deal-capturing and deal-loss effects are both

strengthened, and the interplay of these two effects dictates the OptAR.

When θ is close to zero, from Proposition 4, we expect that the BnchAR is the optimal assignment

rule that maximizes the system’s ST for any value of µ2, i.e., n
∗
1 = [ṅ1]. Recall that, among two

independent multi-server queues with identical arrival rates and capacities but different service

rates, the one with a lower service rate has more servers and a longer expected sojourn time. In

the presence of abandonment, a longer sojourn time leads to a higher probability of abandonment.

Thus, as θ increases, in a tandem queueing system under BnchAR, the station with the lower

service rate will have more abandonment. In this case, the deal-capturing effect is strengthened,

and some servers from Station 2 should be moved to Station 1, unless the deal-loss effect caused by

moving these servers dominates the deal-capturing effect. When servers in both stations work at

similar rates under BnchAR, moving servers to Station 1 does not trigger a strong deal-loss effect,

because deals served by Station 1 enter service in Station 2 almost immediately. In this instance,
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the deal-capturing effect dominates the deal-loss effect, and it is favorable for the OptAR to assign

more servers to Station 1 than the BnchAR would dictate. However, when µ2 increases, the deal-loss

effect is strengthened, because servers now work faster in Station 2 than in Station 1, and (recall

from the discussion of Proposition 3) deals have a higher service completion probability when

they are served by faster servers. Thus, when µ2 increases under BnchAR, it becomes increasingly

beneficial to keep servers in Station 2, or to even move some servers from Station 1 to Station 2,

and there is a tendency for the OptAR to assign more servers to Station 2.

This intuition is verified in Figure 4, where ∆n1 = n∗
1 − [ṅ1], %TP ∗ = TP (n∗

1)/TP , and

%TPBM = TP ([ṅ1])/TP are plotted as functions of abandonment rate θ ∈ {0.1,0.2, . . . ,2}, when

N = 30 and λ1 ∈ {[ṅ1]µ1,1.5 [ṅ1]µ1,2 [ṅ1]µ1} for three representative values of µ2 ∈ {1,3,6}. Note

that, in reality, the downstream control function is less likely to be five times faster than the

upstream front office and deals’ abandonment rate is not likely to reach 2 (i.e., all deals in the

negotiation process are canceled w.p. 2/3), so the µ2 = 6 and θ = 2 cases are of low practical

significance. Nonetheless, to provide complete insights, we consider them here.

We see that there is a critical cutoff point in Station 2’s service rate, i.e., µ2 = 3. At this point,

the deal-capturing and deal-loss effects are of similar strength, so the OptAR n∗
1 and the BnchAR

[ṅ1] assigns an almost identical number of servers to Station 1; see, e.g., µ2 = 3 in Figure 4b. When

µ2 is smaller than this cutoff point, the deal-capturing effect dominates the deal-loss effect, so the

OptAR n∗
1 assigns more servers to Station 1 than the BnchAR [ṅ1]; see, e.g., µ2 = 1 in Figure 4a.

The difference between the ST under OptAR and BnchAR may reach as high as 9% of the ST

upper bound TP , when the demand rate is twice the benchmark capacity; see, e.g., Figure 4d.

When µ2 is greater than the cutoff point, the deal-loss effect dominates the deal-capturing effect,

so the OptAR n∗
1 assigns fewer servers to Station 1 than the BnchAR [ṅ1]; see, e.g., µ2 = 6 in

Figure 4c. However, in this case, the ST under both assignment rules is similar, and the difference

between %TP ∗ and %TPBM stays below 0.5% of TP for any θ; see, e.g., Figure 4f. We observe

from the numerical results that the cutoff point µ2 = 3 applies for a wide range of λ1 and θ of

practical significance.
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Figure 4 ∆n1 = n∗
1− [ṅ1], %TP ∗ = TP (n∗

1)/TP , and %TPBM = TP ([ṅ1])/TP as functions of abandonment rate

θ, when N = 30 and λ11 ∈ {[ṅ1]µ1,1.5 [ṅ1]µ1,2 [ṅ1]µ1} for µ2 ∈ {1,3,6} cases.

We further observe that when the abandonment rate, θ, is large, the difference between the

system’s ST under OptAR and BnchAR is small. For example, when θ= 2, the difference between

%TP ∗ and %TPBM is typically less than 1% of TP ; see, e.g., Figure 4d-f. The intuition is that

when θ is large, the abandonment probability is so high that servers’ utilization is relatively low.

Thus, almost all deals enter service immediately upon entering both stations. In this case, the

system’s ST under BnchAR is close to the ST upper bound for any staffing policies in Corollary

4. Although the OptAR may be significantly different from the BnchAR (see, e.g., Figure 4a-c), it

does not improve the ST very much (see, e.g., Figure 4).

For banks, our results identify three operational regions in the downstream control function’s

service rate µ2. (i) When µ2 is less than the cutoff point and close to µ1, banks should try their

best to identify the optimal assignment rule. Doing so will increase the bank’s ST by a significant

amount and improve the bank’s overall profitability. (ii) When µ2 is at the cutoff point, an easily
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Figure 5 Minimum number of staffs needed to reach 95% of the throughput upper bound under OptAR N∗
Opt

and BnchAR N∗
Bnch and the corresponding assignment rules n∗

1 and [ṅ1] as functions of arrival rate λ1,

when µ1 = 1, θ= 0.5, for µ2 ∈ {1,3,6} cases.

calculable BnchAR is close to optimal. (iii) When µ2 is greater than the cutoff point, although the

BnchAR may deviate from the OptAR, the performance of the BnchAR is close to optimal, so

banks can stick with it to keep their operations simple.

4.3. Staffing Policies

From Corollary 4, we know that the ST under any staffing policies in a tandem queueing system

with abandonment is lower than λ1
µ1

µ1+θ
µ2

µ2+θ
. Of course, to reach this upper bound, the bank has

to spend a very large amount of its operating budget on staffing. We thus investigate the minimum

number of staff needed to reach 95% of the ST upper bound under OptAR N∗
Opt and under BnchAR

N∗
Bnch that can be quickly identified by using the enumeration of the total number of servers

available N .

In Figure 5, when µ1 = 1 and the arrival rate λ1 increases from 20 to 50, we plot the minimum

numbers of staff needed to reach 95% of the ST upper bound N∗
Opt and N∗

Bnch, for the OptAR and

BnchAR respectively, and the corresponding assignment rules n∗
1 and [ṅ1], respectively, for three

representative values of µ2 ∈ {1,3,6}. Note that we use θ = 0.5 as a representative example, but

the insights developed here hold for other values of θ.

Similar to Section 4.2, we observe a cutoff point (see Figure 5), at which the staffing levels under

both OptAR and BnchAR, N∗
Opt and N∗

Bnch, respectively, are similar, as are the corresponding
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assignment rules n∗
1 and [ṅ1]; see, e.g., µ2 = 3 in Figure 5b. If µ2 is smaller than this cutoff point,

there is a significant difference between the staffing policies under OptAR and BnchAR. For exam-

ple, in Figure 5a, the difference between N∗
Opt and N∗

Bnch is 3, when λ1 = 20, and can be up to 8

when λ1 = 50. Moreover, although when it uses the OptAR, the system needs fewer servers than it

does when it uses the BnchAR, more servers are assigned to Station 1 under OptAR than under

BnchAR because the deal-capturing effect dominates the deal-loss effect. If µ2 is greater than the

cutoff point, the staffing level under OptAR is slightly lower than it is under BnchAR, and fewer

servers are assigned to Station 1 under OptAR than BnchAR; see, e.g., Figure 5c. In this case,

Station 2 is much more efficient than Station 1, so the deal-loss effect dominates the deal-capturing

effect. It becomes beneficial to move some servers from Station 1 to Station 2. As shown by our

numerical results, the cutoff point µ2 = 3 holds for a wide range of λ1 and θ.

Our results provide useful guidelines for banks’ financial service operations. As in Section 4.2,

three operational regions are related to the downstream control function’s service rate µ2. (i) If

µ2 is less than the cutoff point, the OptAR saves the bank a significant head count compared to

the BnchAR, by emphasizing the upstream front office and assigning more staff to there. (ii) If µ2

is at the cutoff point, the simple BnchAR is optimal. (iii) If µ2 is greater than the cutoff point,

the OptAR can optimize the bank’s head count. However, in this case, the optimal staffing policy

puts more emphasis on the downstream control function, assigning more staff there, unlike in (i).

Fortunately, our numerical method can easily find the optimal staffing policy for any deal arrival,

processing, and abandonment rates.

5. Additional Applications

Our model in Section 2 goes beyond the financial services application specified here. In this section,

we demonstrate its generalization to other applications with various features by incorporating

flexible servers.

5.1. Flexible Servers

Berman and Sapna (2005) consider the management of homogeneous flexible servers in a two-

station tandem queue. Andradottir and Ayhan (2005) consider a similar problem with finite inter-

mediate buffer and heterogeneous flexible servers; i.e., different servers may have different service
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rates at different stations. They aim to find the optimal policy to dynamically assign flexible servers

to different stations to maximize long-run average throughput. However, the optimal policies are

usually too complicated to describe and implement. In this section, we extend our model to consider

flexible servers.

To focus on the effect of flexible servers, we study a simple tandem queueing system with identical

abandonment rates in both stations’ waiting rooms, i.e., θ1w = θ2w = θ, without direct departure

from Station 1, external arrivals at Station 2, or customer abandonment from service, i.e., p= 1,

λ2 = 0, and θ1s = θ2s = 0.

Suppose f flexible servers can work in both stations in addition to the dedicated n1 and n2

servers in Stations 1 and 2. We assume that when serving customers in Station i, the flexible servers

have the same service rate as the dedicated servers in Station i, but they give preemptive priority

to Station 1 customers over Station 2 customers. Thus, when all n2 dedicated servers in Station 2

are busy and a flexible server is not needed by Station 1 customers, that server can serve Station 2

customers in Station 2 with a rate µ2. Because of the preemptive priority of Station 1 customers,

whenever a flexible server serving a Station 2 customer is needed by a Station 1 customer, the

Station 2 customer will be preempted. The preempted Station 2 customer may wait in Station 2’s

waiting room, if it is not full; otherwise, she will be bumped out of the system; i.e., she will be lost.

The number of flexible servers that are available for Station 2 customers when there are q1

Station 1 customers in the system is max(f −max(q1 −n1,0) ,0), and the maximum number of

Station 2 customers the system can have when there are q1 Station 1 customers in the system is

n2 +m+max(f −max(q1 −n1,0) ,0). Thus, the total rate at which the system leaves the state

(q1, q2) in a system with f flexible servers is

v (q1, q2) = λ1 + θ (max(q1 −n1 − f,0)+max(q2 −n2 −max(f −max(q1 −n1,0) ,0) ,0))

+µ1min(q1, n1 + f)+µ2min(q2, n2 +max(f −max(q1 −n1,0) ,0))

for q1 = 0,1, . . . , and q2 = 0,1, . . . , n2 +m+max(f −max(q1 −n1,0) ,0) .



29

2

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2
2

2

2

2 2

3,0 3,1 3,2
2

4,0 4,1 4,2
2

5,0 5,1 5,2
2

2

2

2

2

2

2

2 2

3

2

2

2

0,3

1,3

2,3

3,3

4,3

2 + 2

5,3

2 + 3

2 +

2

3

2 +

2 +

2 +

2 +

2

3 +
0,4

1,4

The cross-trained server is in station 2

Bumping due to arrivals

The cross-trained 

server is in station 1

3 +

Balking due to 

Completion 1

Figure 6 The Markov Chain of tandem queueing system with n1 = 1, n2 = 2, f = 1, and m= 1.

Figure 6 illustrates the MC of a system with one dedicated server in Station 1, two dedicated

servers in Station 2, and one flexible server. Comparing Figures 2 and 6, we see that the MC in

Figure 6 has two extra states (0,4) and (1,4), that are added because of the flexible server. When

the number of Station 1 customers is greater than the total number of servers who can work in

Station 1, i.e., q1 ≥ n1+f , the flexible servers act the same as dedicated servers in Station 1, because

of the preemptive priority given to Station 1 customers. Introducing flexible servers changes the

subspace {(q1, q2) |q1 ≤ n1 + f}, but not the subspace {(q1, q2) |q1 >n1 + f}. Therefore, an analysis

identical to that in Section 3 and Appendix A1 can be applied here to obtain the required service

level measures.

5.2. Caring for Critical Patients

In the context of healthcare, Armony et al. (2017) use diffusion approximation to analyze a tandem

queueing network with flexible servers serving impatient critical patients. They model a two-station

tandem queueing system with an Intensive Care Unit (ICU) as upstream Station 1 and a Step

Down Unit (SDU) as downstream Station 2. Patients in critical conditions arriving at ICU may go

to other hospitals or, in extreme cases, they may die because of the long wait; in either case, they

abandon the waiting line. Critical patients who receive service in ICU will become semi-critical

patients and will visit Station 2 with probability (w.p.) p; otherwise, they are cured and can leave
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Figure 7 The Markov Chain of Armony et al. (2017) with two servers in each station, which is equivalent to our

model with n1 = 0, f = n2 = 2, and m= 0.

immediately, w.p. 1− p. If SDU is full and no critical patients are waiting for ICU whose service

rate is µ1, semi-critical patients can be served in ICU with rate µ2, but critical patients can preempt

semi-critical ones in ICU.

SDU has no waiting room; i.e., m= 0. Patients do not abandon while they are in service. Thus,

we only see abandonment from the ICU’s waiting line; i.e., θ1w = θ > 0 and θ1s = θ2s = 0. Armony

et al. (2017) assume there are no external arrivals at SDU; i.e., λ2 = 0.

This is a special case of the model with flexible servers discussed in Section 5.1: there are no

dedicated servers for Station 1, only flexible servers; i.e., n1 = 0 and f > 0. Figure 7 illustrates the

(q1, q2) MC of Armony et al.’s (2017) model with two servers in each station; this corresponds to

our model where n1 = 0, f = n2 = 2, and m= 0.

Because introducing flexible servers only changes the finite part of the MC, e.g., Figure 7, it

adds little complexity to the model and can be analyzed using a method similar to that in Section

3 and Appendix A1.

Notably, whereas diffusion approximation results are only valid when the workload is high, our

method can provide exact analysis for any workload. Moreover, incorporating external arrivals into

the downstream SDU, a practical element not captured by the model in Armony et al. (2017), is

straightforward as per the discussion in Section 2.



31

5.3. No Abandonment during Service

Applications of tandem queueing system, where customers need to visit several stations in sequence,

include call centers, where customers talk to general call-takers before being transferred to spe-

cialists, and hospital emergency rooms, where patients are admitted by triage nurses and then

diagnosed by a doctor. In these applications, customers rarely abandon during service. Moreover,

because of the waiting cost already incurred, customers waiting for the downstream station may

abandon less often than those waiting for the upstream station. To adapt our general model to

these applications, we simply use θ1s = θ2s = 0 and θ1w ≥ θ2w > 0. In Online Appendix OA2, we

carry out an initial numerical study in this direction with θ1w = θ2w = θ. There are no abandon-

ments during service, direct departures from Station 1, or external arrivals at Station 2, i.e., p= 1,

λ2 = 0 and θ1s = θ2s = 0. We develop managerial insights into the operations of such systems and

suggest the need for additional studies in this direction.

6. Summary

In this paper, we study tandem queueing networks with impatient customers – a model with

applications in a number of different industries. We provide the first exact analysis of these level-

dependent quasi-birth-and-death (LDQBD) processes. In Proposition 1, we develop a technique to

generate a recursive relation in this LDQBD process, so that the first passage matrices at differ-

ent levels can be derived by solving quadratic matrix equations, using exact numerical methods

from the literature. We simplify the derivation by jointly using the recursive renewal reward the-

orem and queueing and Markov chain decomposition. This simplification reduces the number of

quadratic matrix equations we must solve to only one, greatly reducing the computational bur-

den. We then provide an efficient exact numerical method to calculate different metrics for general

tandem queueing systems with abandonment.

We use the numerical method to tackle the staffing problem in banks’ financial service systems

with the service throughput as the target measure. Our results point to useful guidelines for banks.

When the control function’s service rate is below a critical cutoff point, it is necessary to identify
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the OptAR, as it will reduce the total number of servers needed by assigning more servers to the

front office than the BnchAR (which assigns identical capacities to both stations). If the control

function’s service rate is at the cutoff point, it is optimal to use the easily calculable BnchAR.

When the control function’s processing rate is above the cutoff point, the OptAR may deviate from

the BnchAR. However, the staffing policies based on the BnchAR may not be very different from

those based on the OptAR.

This paper represents an initial study of tandem queueing systems with impatient customers,

but our study goes beyond a basic examination. We demonstrate how to extend our model to

include other features and achieve wider applicability. For example, it can be modified to contain

tandem queueing networks with flexible servers; with flexible servers, it can optimally solve the

ICU-SDU model studied by Armony et al. (2017).
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Appendix to

“Staffing Tandem Queues with Impatient Customers – Application in Financial

Service Operations”

A1. Recursive Renewal Reward Extension
We now propose a method for the derivation of the service level measures of Station 2 deals’ based

on renewal reward theorem and QMCD. We use κj, the distribution of the number of Station 2

deals, to illustrate our method. Section A1.1 includes our second main theoretical contribution.

A1.1. QMCD and Renewal Reward Theorem

We focus on κj, the probability of having j Station 2 deals in the system. As the first step of

QMCD, we decompose the Markov Chain into two subsystems, when q1 ≤ n1 and when q1 > n1,

and consider them separately.

Let σ0 = 0 and assume that we start with an empty system. For i= 1,2, . . ., we define the stop-

ping times τi = inf {t |Q1(t) = n1 +1 and t > σi−1} and σi = inf {t |Q1 (t) = n1 and t > τi }; i.e., τi is
the ith time the system enters the subspace {(q1, q2) |q1 >n1} from the subspace {(q1, q2) |q1 ≤ n1},
and σi is the ith time the system enters the subspace {(q1, q2) |q1 ≤ n1} from the subspace

{(q1, q2) |q1 >n1}. Note that, due to abandonment, our system is stable, so that we have both

τi <∞ and σi <∞ for any i <∞. From the definition of τi and σi, we have σ0 < τ1 < σ1 < τ2 <

σ2 < · · ·< τi <σi <∞. Clearly, from σi to τi+1, there are q1 ≤ n1 Station 1 deals in the system, and

from τi to σi, there are q1 >n1 Station 1 deals in the system.

From these definitions, τi and σi entirely depend on the number of Station 1 deals in the system.

From Observation 1, then, the time periods from σi to τi+1, i= 1,2, . . ., are all independent and

identically distributed (i.i.d). Since Station 1’s waiting room is empty in these time periods, we

call them “waiting room empty periods” (EP). We use a random variable, LEP , to represent their

length. Similarly, we use a random variable, LOP , to represent the length of the i.i.d. time periods

from τi to σi, i = 1,2, . . ., and we call these periods “waiting room occupied periods” (OP). As

illustrated in the right side of Figure 2, EPs intertwine with OPs: once the system leaves the

subspace {(q1, q2) |q1 ≤ n1}, it enters the subspace {(q1, q2) |q1 >n1}, a ladder-like one dimensional

infinite MC, and vice versa. Let E [LEP ] and E [LOP ] be the expected lengths of EP and OP,

respectively. From the law of large numbers, we have E [LEP ] = limk→∞
1
k

∑k

i=0 (τi+1 −σi) and

E [LOP ] = limk→∞
1
k

∑k

i=1 (σi − τi).

Gandhi et al. (2013) provide an innovative technique for solving ladder-like one dimensional

infinite MCs using the renewal reward theorem (see, e.g., Ross 2007). The fundamental idea is to

consider any quantity of interest as the “reward” earned per unit time in an MC, where the reward

could be any function of the number of deals in the system. By the renewal reward theorem, the

long-run average reward is the same as the expected reward earned over a cycle divided by the

expected cycle length. For example, if the reward is 1 at any time t, the reward earned in a cycle

is equal to the cycle length; if the reward equals the number of deals in the system at time t, the

reward earned in a cycle is the accumulative number of deals in the system in the cycle, i.e., the

expected number of deals in the system multiplied by the cycle length.
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However, Gandhi et al.’s (2013) technique requires all “rung” transitions on the ladder to be

uni-directional. Unfortunately, this special structure does not hold in many queueing networks,

including the one we consider. For example, in Figure 2, the transitions between columns are bi-

directional: a service completion or abandonment in Station 2 moves the system from column i+1

to i, while a service completion in Station 1 moves it from column i to i+1. Thus, the technique

in Gandhi et al. (2013) cannot be applied directly here. We therefore extend their renewal reward

theorem based approach to solve our MC as demonstrated below and call it the recursive renewal

reward extension (RRRE).

We consider τi, i = 1,2, . . ., i.e., every time the system moves from level n1 to level n1 + 1, as

a renewal point. We call the time period between τi and τi+1 a cycle. Each cycle starts with an

OP. After a certain time period, the system leaves the subspace {(q1, q2) |q1 >n1} and enters the

subspace {(q1, q2) |q1 ≤ n1}; i.e., the system leaves the OP (from state (n1 +1, q2), q2 = 0, . . . , n2+m)

and moves into the EP (at state (n1, q2), q2 = 0, . . . , n2 +m). Every cycle ends with the system

leaving the subspace {(q1, q2) |q1 ≤ n1} (entering the subspace {(q1, q2) |q1 >n1}). Thus, each cycle

is composed of an OP followed by an EP, and the expected length of any cycle is E [LEP ]+E [LOP ].

In contrast to Gandhi et al. (2013), the cycles we define may start at different states (with different

q2). Thus, while the lengths of these cycles are only dictated by the number of Station 1 deals

and are i.i.d., the distribution of the number of Station 2 deals within these cycles depends on the

starting state and is not necessarily i.i.d.

Note that κj is equivalent to the steady state proportion of time the system is at states

{(q1, q2) |q2 = j, ∀q1 }. Let

Φκj
(t) =


1 if the system is at state (q1, q2) s.t., q2 = j,∀q1

0 otherwise

(OA.1)

be the rewards earned at time t. By the renewal reward theorem, the fraction of time the system

spends at states {(q1, q2) |q2 = j, ∀q1 } in steady state is the expected time spent at those states in

a cycle divided by the average cycle length, i.e.,

κj =
E
[∫

LOP
Φκj

(t)dt
]
+E

[∫
LEP

Φκj
(t)dt

]
E [LOP ] +E [LEP ]

. (OA.2)

Continuing with the second step of QMCD, we now solve each of the subsystems. In Section

A1.2, we derive E [LEP ] and E [LOP ]. In Sections A1.3 and A1.4, we investigate the subspaces

{(q1, q2) |q1 ≤ n1} and {(q1, q2) |q1 >n1} separately for the expected reward in a cycle. Then, in

Section A1.5, we express E
[∫

LOP
Φκj

(t)dt
]
+E

[∫
LEP

Φκj
(t)dt

]
in Theorem A1.

A1.2. Expected Lengths of LEP and LOP

In what follows, we derive E [LEP ] and E [LOP ]. Observation 1 states that from Station 1 deals’

point of view, Station 1 operates as an M/M/n1+M system. As shown in Figure 2, the subspace

{(q1, q2) |q1 ≤ n1} is a finite MC. Let Xi be the expected first entrance time to level n1 +1, given

that the system starts from level i, for i= 0, . . . , n1. Clearly, from the definitions of E [LEP ] and

Xn1
, we have E [LEP ] =Xn1

.
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Proposition A1. The expected length of LEP , E [LEP ] =Xn1
, can be calculated from the fol-

lowing n1 +1 equations with n1 +1 unknowns:

Xi =


1
λ1

+X1 if i= 0

1
λ1+i(µ1+θ1s)

+ λ1
λ1+i(µ1+θ1s)

Xi+1 +
i(µ1+θ1s)

λ1+i(µ1+θ1s)
Xi−1 if i= 1, . . . , n1 − 1

1
λ1+n1(µ1+θ1s)

+ n1(µ1+θ1s)

λ1+n1(µ1+θ1s)
Xn1−1 if i= n1

. (OA.3)

Note that (OA.3) is essentially a tridiagonal matrix equation, whose closed form solution can be

derived by Gaussian elimination.

From the definition of T (q1) in Section 3.1, it is clear that the LOP is distributed identically to

the T (n1+1). Hence, E [LOP ] is given in (7).

We next derive E
[∫

LEP
Φκj

(t)dt
]

and E
[∫

LOP
Φκj

(t)dt
]
, and use (OA.2) to obtain κj.

Note that E [LEP ] and E [LOP ] are independent of q2; in contrast, both E
[∫

LEP
Φκj

(t)dt
]
and

E
[∫

LOP
Φκj

(t)dt
]
depend on q2 at the beginning of the EP and the OP. Therefore, deriving these

quantities requires an analysis that conditions on q2 at the beginning of a cycle, i.e., in a vec-

tor space that tracks q2 at the beginning of cycles. This analysis in the vector space significantly

extends Gandhi et al. (2013).

To demonstrate this challenge, we use κ2 as an example but it can be replaced with other

measures. Then, Φκj
(t) = 1 only at states (q1,2), i.e., states with two Station 2 deals in the

system. Now consider E
[∫

LOP
Φκj

(t)dt
]
in the MC in Figure 2 with a relatively large abandonment

rate compared to the arrival and service rates; i.e., θ1s = θ1w = 33 >> λ1 = µ1 = µ2 = 1. This

means that after entering level n1 + 1, with probability 2µ1+2θ1s+θ1w
λ1+2µ1+2θ1s+θ1w

> 0.99, the OP will end

after an exp (λ1 +2µ1 +2θ1s + θ1w) time period with an abandonment. Therefore, if an OP starts

from state (3,0), with probability greater than 0.99, no reward is collected in this OP, so that

E
[∫

LOP
Φκj

(t)dt
]
≈ 0. In contrast, if an OP starts from state (3,2), the expected reward is at least

1
λ1+2µ1+2µ2+2θ1s+θ1w

= 1
104

, i.e., E
[∫

LOP
Φκj

(t)dt
]
≥ 1

104
. A similar discussion can be applied to the

EP. To overcome this difficulty, we need to track the number of Station 2 deals in the system at

the beginning of each EP and OP.

Let I be the identity matrix (of the required size). Let r(i) be the vector of expected reward

earned at level i and r(i)q2
represent the expected reward earned at state (i, q2). Note from (OA.1)

that the reward Φκj
(t) is positive only at state (q1, q2) for q2 = j. Using v (i, q2) in (3), we have

r(i)q2
=


1

v(i,q2)
if q2 = j

0 if q2 ̸= j

.

A1.3. Markov Chain’s Transient Behavior during OP

We consider the OP, i.e., the subspace {(q1, q2) |q1 >n1}, with a focus on the expected first passage

reward vector earned during an OP, α, based on the value of q2 at the beginning of the OP; i.e.,

αi represents the rewards earned during an OP, given that the OP starts with i Station 2 deals.

We apply the method of generating a recursive relation in Section 3 to the expected first passage

reward vector, α.
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Proposition A2. The expected first passage reward vector earned during an OP is

α=
(
I −A

(n1+1)
1 −A

(n1+1)
0 −P {Θ1w >LOP}A(n1+1)

0 G(n1+1)
)−1

r(n1+1). (OA.4)

A1.4. Markov Chain’s Transient Behavior during EP

We now consider the EP, i.e., the subspace {(q1, q2) |q1 ≤ n1}, with a focus on two values:

1. H, the first passage probability matrix in EPs; i.e., Hij represents the probability that an EP

ends at state (n1 +1, j), given that it starts from state (n1, i). Note that, similar to the matrices

A
(i)
0 , A

(i)
1 , and A

(i)
2 in Section 2, H is of size (n1 +m+1)× (n1 +m+1).

2. β, the expected first passage reward vector earned during an EP based on the value of q2 at

the beginning of the EP; i.e., βi represents the rewards earned during an EP, given that the EP

starts with i Station 2 deals.

Because the EP (the subspace {(q1, q2) |q1 ≤ n1}) has a finite number of states, using matrix

analytic methods (see, e.g., Latouche and Ramaswami 1999) to derive the first passage probability

matrix H in the EPs is straightforward. Let Yi be the first passage probability matrix to level i+1,

given the sample path starts from level i, for i= 0, . . . , n1. Clearly, from the definitions of Yn1
and

H, we have H=Yn1
.

Proposition A3. The first passage probability matrix during an EP H=Yn1
can be calculated

from the following n1 +1 matrix equations with n1 +1 unknowns:

Yi =


A

(0)
0 +A

(0)
1 Y0 if i= 0

A
(i)
0 +A

(i)
1 Yi +A

(i)
2 Yi−1Yi if i= 1, . . . , n1 − 1

A
(n1)
0 +A

(n1)
1 Yn1

+A
(n1)
2 Yn1−1Yn1

if i= n1

. (OA.5)

Following the idea of Proposition A3, we can derive β, the expected first passage reward vector

earned during an EP. Let zi be the expected first passage reward vector to level i+ 1, given the

sample path starts from level i, for i= 0, . . . , n1. Note that, by definition, we have β = zn1
.

Proposition A4. The expected reward earned during an EP, β = zn1
, can be derived by solving

the following n1 +1 sets of linear equations with n1 +1 unknown vectors:

zi =


r(0) +A

(0)
1 z0 if i= 0

r(i) +A
(i)
1 zi +A

(i)
2 (zi−1 +Yi−1zi) if i= 1, . . . , n1 − 1

r(n1) +A
(n1)
1 zn1

+A
(n1)
2 (zn1−1 +Yn1−1zn1

) if i= n1

. (OA.6)

A1.5. Expected Reward Earned in a Cycle

After developing the first passage probability matrices between the EP and OP and the expected

first passage reward vectors in both time periods, we can derive the expected rewards earned in a

cycle. This is the last step of QMCD: combining the two subsystems together and normalizing the

solution.
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Theorem A1. The expected first passage reward vector earned in one cycle is

E

[∫
LOP

Φκj
(t)dt

]
+E

[∫
LEP

Φκj
(t)dt

]
= ωα+ωG(n1+1)β, (OA.7)

where ω is the unique nonnegative solution of

ωG(n1+1)H = ω, (OA.8)

and ω
−→
1 = 1, (OA.9)

and G(n1+1), α, H, and β are given in Propositions 2, A2, A3, and A4, respectively.

Now, with the expected reward and average cycle length developed, by using the renewal reward

theorem, we can easily derive κj, the probability of having j Station 2 deals in the system, by

substituting (OA.7), (7), and E [LEP ] obtained from Proposition A1 into (OA.2) for j = 0,1, . . ..

We stress that in our method, only a few matrices and vectors must be derived by solving matrix

equations. The computation is much less complex than in the approach described at the end of

Section 3.

A1.6. Other Service Level Measures

So far, we have focused on the distributions of Q2 (the number of Station 2 deals) in a two-station

tandem queueing network with abandonment as an example to illustrate our methodology. The

same method can be used to derive other service level measures, and the selection of the reward

function Φ(t) is quite flexible.

As illustrated in Figure 1, there are four streams of deals flowing out of the system: abandonment

from Station 1’s waiting room, and balking, abandonment, and departure from Station 2. The

abandonment rate from Station 1 can be calculated as
∑∞

i=n1+1 ηi (n1θ1s +(i−n1)θ1w), where ηi

is given in (2). Recall that balking from Station 2’s waiting room occurs when a Station 1 deal

completes service at Station 1, and Station 2’s waiting room is full, while abandonment or departure

from Station 2 takes place when there are Station 2 deals in Station 2. Thus, to calculate the

balking, abandonment, and departure rates from Station 2, we set

ΦB2
(t) =


µ1 min(q1,n1)

v(q1,n2+m)
if the system is at state (q1, q2) s.t., q2 = n2 +m

0 otherwise

,

ΦAb2 (t) =
θ2smin(q2, n2)+ θ2wmax(q2 −n2,0)

v (q1, q2)
for q1 = 0,1,2, . . . ,

and

ΦD2
(t) =


µ2 min(q2,n2)

v(q1,q2)
if the system is at state (q1, q2) s.t., q2 > 0

0 otherwise

,

respectively, and apply Theorem A1. The sum of these four deal out-flows should equal the arrival

rate, and the departure rate from Station 2 is the ST.

We note that the RRRE works well for service level measures in Station 2 where the numerator

of the reward function Φ(t) is level-independent. For SLMs in Station 1, this approach can be com-

plicated, as explained in the discussion of the departure time of deal A in the proof of Proposition

1. Fortunately, from Observation 1, the service level measures in Station 1 can be derived using

fundamental queueing theory tools, as in Section 2.2.
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A2. Proofs and Algorithms
A2.1. Proof of Corollary 2

Recall that P {Θ1w >LOP}= L̃OP (θ1w). Then, by letting s→ 0 in (6), we can write P {Θ1w >LOP}

as a function of E [LOP ]:

P {Θ1w >LOP} = lim
s→0

(θ1w +n1 (µ1 + θ1s)+ s) L̃OP (s)− θ1w −n1 (µ1 + θ1s)

λ1L̃OP (s)−λ1

=
L̃OP (0)+ (θ1w +n1 (µ1 + θ1s)) L̃

′
OP (0)

λ1L̃′
OP (0)

(L’Hospital’s Rule)

=
θ1w +n1 (µ1 + θ1s)

λ1

− 1

λ1E [LOP ]
.

A2.2. Proof of Proposition 2

In the beginning of any OP, the system is at level n1+1 of the MC. Then, three types of transitions

may happen: 1) The system moves to level n1, with the one-step transition probability matrix

A
(n1+1)
2 , and the OP ends. In this case, the first passage probability matrix is A

(n1+1)
2 . 2) The

system moves to another state in the same level n1+1, with one-step transition probability matrix

A
(n1+1)
1 . Because of the memoryless property, the system operates as if it starts from level n1 +1.

In this case, the first passage probability matrix is A
(n1+1)
1 G(n1+1). 3) The system moves to level

n1 +2, with one-step transition probability matrix A
(n1+1)
0 . Two Station 1 deals are now waiting

for Station 1, and the repeating structure implies that the first passage probability matrix is

A
(n1+1)
0

(
P {Θ1w ≤LOP}G(n1+1) +P {Θ1w >LOP}

(
G(n1+1)

)2)
. That is, in this case, if deal A has

abandoned before the end of the OP initiated by deal B (w.p. P {Θ1w ≤LOP}), the first passage

probability matrix is G(n1+1) (as observed by deal B); if deal A does not abandon during this

period (w.p. P {Θ1w >LOP}), the first passage probability matrix is
(
G(n1+1)

)2
(the one observed

by deal B followed by the one to be observed by deal A). Combining the above three points gives

(10).

A2.3. Proof of Proposition 4

When λ1 < [ṅ1]µ1 and θ→ 0+, the BnchAR ensures that all arrivals can obtain service and then

leave as ST.

When λ1 ≥ [ṅ1]µ1, from Chapter 2.10.2 of Gross et al. (2008), we have Station 1’s idling proba-

bility under BnchAR:

p0 =

(
1+

∞∑
n=1

n∏
i=1

λ1

min([ṅ1] , i)µ+ iθ

)−1

,

which converges to zero when θ → 0+. Thus, the utilization of the station with lower capacity

converges to one; i.e., all its servers almost always work with no idleness, so the system’s output

converges to Poisson (min ([ṅ1]µ1, (N − [ṅ1])µ2)). Clearly, no other assignment rules can generate

higher ST than the BnchAR.
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A2.4. Algorithm for the First Passage Probability Matrix

Let ϵ be the error tolerance for the numerical algorithm.

Algorithm A1 Deriving the first passage probability matrix G(n1+i).

Step 1: Set G(n1+i) =
(
I −

(
A

(n1+i)
1 +P {Θ1w ≤LT (n1+i)}A(n1+i)

0

))−1

A
(n1+i)
2 .

Step 2: Set X =A
(n1+i)
1 +P {Θ1w ≤LT (n1+i)}A(n1+i)

0 +P {Θ1w >LT (n1+i)}A(n1+i)
0 G(n1+i).

Step 3: Set G(n1+i) = (I −X)
−1

A
(n1+i)
2 .

Step 4: If max
∣∣∣−→1 −G(n1+i)−→1

∣∣∣> ϵ, then go to Step 2; otherwise STOP.

Clearly, the smaller the error tolerance ϵ the more accurate the result. The convergence of

Algorithm A1 is guaranteed by Theorem 8.1.1 in Latouche and Ramaswami (1999).
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Online Appendix to

“Staffing Tandem Queues with Impatient Customers – Application in Financial

Service Operations”

OA1. Proofs and Algorithms
OA1.1. Proof of Proposition A1

The proof is based on the sample path method and the memoryless property of Markovian systems.

Say the system is currently at level n1. On average, the system stays at level n1 for 1
λ1+n1(µ1+θ1s)

time units. Then

• with probability λ1
λ1+n1(µ1+θ1s)

, the system moves to level n1+1, and, in this case, Xn1
is zero;

• with probability n1(µ1+θ1s)

λ1+n1(µ1+θ1s)
, the system moves to level n1−1. From the memoryless property,

the system will operate as if it starts from level n1 − 1. In this case, Xn1
is n1(µ1+θ1s)

λ1+n1(µ1+θ1s)
Xn1−1.

Combining the above two points gives the first equation in (OA.3) for i = 0 and a similar

discussion gives the rest of (OA.3).

OA1.2. Proof of Proposition A2

We first use the MC in Figure 2 as an example to derive α, focusing on the probability of having

two Station 2 deals in the system; i.e., j = 2 in the definition of Φκ2
(t) in (OA.1). The proof for

other rewards is similar.

We consider the sample path starting from state (3,0). The system stays in state (3,0) for an

exp (v (3,0)) time period, with no reward. If the next event is abandonment or completion 1 (w.p.
2µ1+2θ1s+θ1w

v(3,0)
), then OP ends with no reward. If the next event is an arrival at Station 1, following

the same discussion as (9) and (10), the new arrival initiates an OP with the same distribution as

LOP . The number of Station 2 deals at the beginning of this OP (initiated by the new arrival) is

zero, so the expected reward obtained in this time period is α0. At the end of this time period, the

distribution of the number of Station 2 deals is: 0 w.p.
[
G(n1+1)

]
00
, 1 w.p.

[
G(n1+1)

]
01
, and 2 w.p.[

G(n1+1)
]
02
. By using the memoryless property and conditioning on whether deal A is still waiting

or not, we can write the expected reward earned in the OP initiated by deal A. From the above

discussion, we get:

α0 =
2µ1 +2θ1s + θ1w

v (3,0)
· 0+ λ2

v (3,0)
α1 +

λ1

v (3,0)
· (α0 +P {Θ1w ≤LOP} · 0

+P {Θ1w >LOP}
([
G(n1+1)

]
00
α0 +

[
G(n1+1)

]
01
α1 +

[
G(n1+1)

]
02
α2 +

[
G(n1+1)

]
03
α3

))
.(OB.1)

Following a similar discussion, for sample paths starting from states (3,1), (3,2), and (3,3), we

derive three other equations for α1, α2, and α3, respectively:

α1 =
µ2 + θ2s
v (3,1)

α0 +
λ2

v (3,1)
α2 +

λ1

v (3,1)
· (α1

+P {Θ1w >LOP}
([
G(n1+1)

]
10
α0 +

[
G(n1+1)

]
11
α1 +

[
G(n1+1)

]
12
α2 +

[
G(n1+1)

]
13
α3

))
,(OB.2)

α2 =
1

v (3,2)
+

2µ2 +2θ2s
v (3,2)

α1 +
λ2

v (3,2)
α3 +

λ1

v (3,2)
· (α2

+P {Θ1w >LOP}
([
G(n1+1)

]
20
α0 +

[
G(n1+1)

]
21
α1 +

[
G(n1+1)

]
22
α2 +

[
G(n1+1)

]
23
α3

))
,(OB.3)
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and

α3 =
2µ2 + θ1w
v (3,3)

α2 +
λ1

v (3,3)
· (α3

+P {Θ1w >LOP}
([
G(n1+1)

]
30
α0 +

[
G(n1+1)

]
31
α1 +

[
G(n1+1)

]
32
α2 +

[
G(n1+1)

]
33
α3

))
.(OB.4)

Solving these four equations with four unknowns gives α0, α1, α2, and α3.

Using the one-step transition matrices A
(n1+1)
0 and A

(n1+1)
1 , we can write (OB.1-OB.4) in matrix

form:

α= r(3) +
(
A

(3)
1 +A

(3)
0

(
I +P {Θ1w >LOP}G(n1+1)

))
α.

Recall that r(3) =
[
0,0, 1

v(3,2)
,0
]T

is the expected reward vector earned at level 3.

Following the same thinking, for the general case, we can write a matrix equation:

α= r(n1+1) +
(
A

(n1+1)
1 +A

(n1+1)
0

(
I +P {Θ1w >LOP}G(n1+1)

))
α.

Note from the discussion in the proof of Proposition A3, the matrix I − A
(n1+1)
1 − A

(n1+1)
0 −

A
(n1+1)
0 P {Θ1w >LOP}G(n1+1) is invertible. Thus, α can be solved as (OA.4).

OA1.3. Proof of Proposition A3

As we did for Proposition A1, we prove Proposition A3 by discussing the sample path and using

the memoryless property of Markovian systems.

If the system is at level n1, three possible transitions may happen next: 1) The system moves to

level n1 +1, with the one-step transition probability matrix A
(n1)
0 . In this case, the EP ends, and

the first passage probability matrix is A
(n1)
0 . 2) The system moves to a different state at the same

level n1, with the one-step transition probability matrix A
(n1)
1 . Using the memoryless property, the

system will operate as if it had started from level n1, yielding a first passage probability matrix

of A
(n1)
1 Yn1

. 3) The system moves to level n1 − 1, with the one-step transition probability matrix

A
(n1)
2 . Now, the sample path needs to return to level n1 with a first passage probability matrix

Yn1−1, before it enters level n1 + 1. Using the memoryless property, the first passage probability

matrix when it moves to level n1 + 1 is once again Yn1
. Therefore, in this case, the first passage

probability matrix is A
(n1)
2 Yn1−1Yn1

. Combining the above three points gives the last equation in

(OA.5) for i= n1.

Note that if a matrix X has the property that limi→∞X i = 0, then I −X is invertible and

(I − X)−1 =
∑∞

i=0X
i. Clearly, limi→∞

(
A

(n1)
1 +A

(n1)
2 Yn1−1

)i

= 0, so (OA.5) can be written as

Yn1
=
(
I−A

(n1)
1 −A

(n1)
2 Yn1−1

)−1

A
(n1)
0 .

In a similar fashion, we derive the other n1 equations (OA.5) and solve these n1 + 1 matrix

equations with n1 +1 unknowns Y0, Y1, . . . , Yn1
recursively from Y0 to Yn1

.

OA1.4. Proof of Proposition A4

As in the proofs of Propositions A1 and A3, for Proposition A4 we discuss the next moves of the

sample path.

Say the system is at level n1. A reward of r(n1) will be collected before one of the next three

possible transitions: 1) The system moves to level n1 +1, with the one-step transition probability

matrix A
(n1)
0 . In this case, the EP ends, and no more reward is collected. 2) The system stays at
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level n1 after a transition, with the one-step transition probability matrix A
(n1)
1 . Then, from the

memoryless property, the expected future reward is zn1
. 3) The system moves to level n1− 1, with

the one-step transition probability matrix A
(n1)
2 . A reward zn1−1 is collected before the sample

path returns to level n1, according to the first passage probability matrix Yn1−1, (derived in Section

A1.4). Then, using the memoryless property, the expected future reward is the same as if the

sample path started from level n1, zn1
. The above discussion gives the first equation in (OA.6) for

i= 0.

Following a similar process, we derive the other n1 equations in (OA.6). Using a discussion similar

to the one in the proof of Proposition A3, we can solve (OA.6) recursively for z0, z1, . . . , zn1
.

OA1.5. Proof of Theorem A1

First, let us review the process for each cycle. Every cycle starts with the sample path entering the

subspace {(q1, q2) |q1 >n1}, i.e., when the OP starts. During the OP, the expected reward vector,

α, depends on the value of q2 at the beginning of the OP. At the end of the OP, an EP starts; i.e.,

the sample path enters the subspace {(q1, q2) |q1 ≤ n1}, according to the first passage probability

matrix G(n1+1), and this gives the distribution of Q2 at the beginning of the EP. Similarly, during

the EP, we collect the expected reward, β, and exit according to the first passage probability matrix

H. After this renewal epoch, another cycle starts, following the same procedure.

From this discussion, we observe that the first passage probability matrix for one cycle is

G(n1+1)H. As the system reaches steady state when t→∞, the limit limi→∞
(
G(n1+1)H

)i
exists.

It has identical rows, and we denote each row by ω. From Theorem 4.1 of Ross 2007, we know ω

is the unique nonnegative solution of (OA.8-OA.9).

Thus, in steady state, every cycle (or each OP) starts with i Station 2 deals with probability ωi,

for i= 0, . . . , n2 +m. Similarly, in steady state, the number of Station 2 deals in the beginning of

each EP is distributed as ωG(n1+1).

Given the steady state probability distribution of Q2 at the beginning of each OP and EP, (OA.7)

is straightforward.

OA2. No Abandonments during Service
Applications of tandem queueing system, where customers need to visit several stations in sequence,

include call centers, where customers talk to general call-takers before being transferred to special-

ists, hospital emergency rooms, where patients are admitted by triage nurses and then diagnozed

by a doctor. In these applications, customers rarely abandon during service. Moreover, due to the

waiting cost already incurred, customers waiting for the downstream station may abandon less

often than those waiting for the upstream station. To adapt our general model to these applications,

we simply use θ1s = θ2s = 0 and θ1w ≥ θ2w > 0. In this section, we carry out an initial numerical

study in this direction with θ1w = θ2w = θ, but no abandonments during service, directly departures

from Station 1, or external arrivals to Station 2, i.e., p= 1, λ2 = 0 and θ1s = θ2s = 0, and develop

managerial insights into the operations of such systems.

We consider two questions:

1. How can we assign N ≥ 2 servers into a two-station tandem queueing network with abandon-

ments to maximize throughput?

2. What is the minimum number of servers needed to achieve a throughput target in such a

network?
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We start with the first question. In Section OA2.1, we discuss how the assignment rule affects

the throughput and use enumeration to search for the optimal assignment rule. In Section OA2.2,

we define an easily calculable benchmark assignment rule and then compare the optimal and the

benchmark assignment rules to gain insight into refining the search method. In Section OA2.3, we

answer the second question by generating a list of best performances of different total numbers of

servers. At this point, the staffing problem in a tandem queue service system can be fully addressed

by choosing the optimal staffing level for any throughput target.

OA2.1. Optimal Assignment Rule, Given N Servers

For a fixed total number of servers, N ≥ 2, suppose n1 (1 ≤ n1 ≤N − 1) servers are assigned to

Station 1, and the rest, n2 =N −n1, are assigned to Station 2. When no confusion arises, we use

n1, instead of (n1, n2), to represent an assignment rule.

On the one hand, when n1 is small (i.e., n2 is large), Station 2 is able to accept most customers

before they abandon, but many customers abandon Station 1’s waiting room before reaching Station

1, making the input rate to Station 2 too low. In this case, we can assign some of Station 2’s servers

to Station 1 to increase the system’s throughput. On the other hand, when n1 is large (i.e., n2 is

small), Station 1 is able to capture most customers before they abandon, but Station 2 does not

have enough capacity to handle all the input from Station 1, causing many customers to abandon

Station 2’s waiting room; consequently, Station 1’s work on these customers is wasted. Therefore,

it is better to move some servers from Station 1 to Station 2 to assure a higher throughput. From

this discussion, we see that the throughput is an increasing function of n1, when n1 is small, and

a decreasing function of n1, when n1 is large – i.e., close to N .

Let TP (n1) denote the throughput of this tandem queueing system under assignment rule

n1. Using the method described in Section 3 and Appendix A1, for a series of systems with

n1 = 1,2, . . . ,N − 1 servers at Station 1, we calculate TP (n1) and find the optimal assign-

ment rule (OptAR) n∗
1 = argmax1≤n1≤N−1 TP (n1) through enumeration. Figure 8 records the

throughput as functions of n1 and the OptAR n∗
1, for λ1 = 40, N = 40, θ = 1, and (µ1, µ2) ∈

{(1,1) , (2,2) , (1,2) , and (2,1)}. We see from Figure 8 that our intuition is valid: the through-

put TP (n1) is, in fact, concave (initially increasing and then decreasing) in n1 and has a global

maximum. The concavity of the throughput holds for all other parameter settings we test. We

summarize the observation below.

Observation OA1 For any fixed λ1, µ1, µ2, θ, and N ≥ 2, the throughput TP (n1) is an initially

increasing and then decreasing concave function of n1, for n1 = 1, . . . ,N − 1.

OA2.2. Optimal Assignment Rule vs. Benchmark Assignment Rule

When the total number of servers N is large, the search time for the OptAR n∗
1, using enumeration,

can be long. In this section, we make observations that can help reduce the search space.

Given N and service rates in two stations (µ1 & µ2), we define {ṅ1|ṅ1µ1 = ṅ2µ2 and ṅ1 + ṅ2 =N}
as the benchmark assignment rule (BnchAR), under which, Stations 1 and 2 have identical capac-

ities. Note that ṅ1 is independent of θ and may be a fraction; however, at this stage, we only

use it for comparison, as rounding has little effect on our analysis. For now, we consider BnchAR

as a virtual assignment rule and assume servers can be assigned in fractions; after making the

comparison, we return to the rounding issue. We call ṅ1µ1 the benchmark capacity. Specifically,
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Figure 8 Throughput as a function of n1 ∈ {1, . . . ,N − 1} when λ = 40, N = 40, θ = 1, and (µ1, µ2) ∈

{(1,1) , (2,2) , (1,2) , and (2,1)} .

we compare the OptAR n∗
1 with the BnchAR ṅ1 to provide intuitions and guidelines for staffing

in tandem queueing systems with impatient customers. These intuitions and guidelines were not

previously available because of a lack of exact evaluation methods for such systems.

We start with the following intuitive proposition for the BnchAR when θ→ 0+.

Proposition OA1. In a tandem queueing system with abandonment rate θ→ 0+, the BnchAR

is optimal in the domain of virtual assignment rules, and the maximum throughput is min(λ1, ṅ1µ1).

Proof of Proposition OA1 When λ1 < ṅ1µ1 and θ → 0+, the BnchAR ensures that all arrivals

can obtain service and then leave as throughput. When λ1 ≥ ṅ1µ1, from Chapter 2.10.2 of Gross

et al. (2008), we have Station 1’s idling probability under the BnchAR:

p0 =

(
1+

∞∑
n=1

n∏
i=1

λ1

min(ṅ1, i)µ+ iθ

)−1

,

which converges to zero when θ→ 0+. Thus, Station 1’s utilization converges to one; i.e., all its ṅ1

servers almost always work at rate µ1 with no idleness, so Station 1’s output, i.e., the arrival to

Station 2, converges to Poisson (ṅ1µ1). The same discussion can be applied to Station 2 to show

that the throughput converges to ṅ2µ2 = ṅ1µ1 when θ→ 0+. Clearly, no other assignment rules can

generate higher throughput than the BnchAR. �
Similar to the discussion in Section OA2.1, when θ > 0, there are two conflicting effects of Station

1’s capacity on Station 2; both effects dictate how the OptAR changes from the BnchAR. For

an arrival to contribute to the throughput of our system, Station 1 needs to capture her before

abandonment and pass her on to Station 2 as input, and Station 2 needs to serve her before

abandonment. On the one hand, for Station 1 to capture enough customers before they abandon

and thus maintain an adequate input rate to Station 2, there is pressure to assign more servers to

Station 1. We call this the deal-capturing effect. On the other hand, part of Station 1’s capacity is

wasted on customers who eventually abandon Station 2’s waiting room. Thus, there is a tendency to

move servers from Station 1 to Station 2 to increase Station 2’s capacity and reduce this undesirable

abandonment. We call this the customer-loss effect. When θ increases, the deal-capturing and
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Figure 9 OptAR n∗
1 and BnchAR ṅ1 as functions of N ∈

{⌊
1
2

(
λ
µ1

+ λ
µ2

)⌋
, . . . ,

⌈
3
2

(
λ
µ1

+ λ
µ2

)⌉}
under λ= 40 and

θ ∈ {1,∞} for (µ1, µ2) = (a) (1,1); (b) (1,2); (c) (2,1); (d) (2,2).

customer-loss effects are both strengthened, and the interplay of these two effects dictates the

OptAR.

When µ1 = µ2, increasing θ strengthens the deal-capturing and customer-loss effects at simi-

lar scales, so that the OptAR remains close to the BnchAR. We next examine the µ1 ̸= µ2 case.

Consider two independent multi-server queues with identical arrival rates and capacities but dif-

ferent service rates. The system with a higher service rate has fewer servers and a longer expected

waiting time. In the presence of abandonment, a longer waiting time leads to a higher probability

of abandonment. Thus, in a tandem queueing system under the BnchAR, the station with the

higher service rate will have more abandonments. If µ1 > µ2, the deal-capturing effect dominates

the customer-loss effect and the OptAR has a tendency to assign more servers to Station 1 than

the BnchAR; but if µ1 <µ2, the customer-loss effect dominates the deal-capturing effect, and the

OptAR has a tendency to assign more servers to Station 2 than the BnchAR.

In Figure 9, we compare n∗
1 with ṅ1; when N increases from

⌊
1
2

(
λ1
µ1

+ λ1
µ2

)⌋
to
⌈

3
2

(
λ1
µ1

+ λ1
µ2

)⌉
, the

service capacity increases from scarcity to plenty for the following cases: (i) arrival rate λ1 = 40; (ii)

different service rates (µ1, µ2) ∈ {(1,1) , (2,2) , (1,2) , and (2,1)}, representing the µ1 = µ2, µ1 <

µ2, and µ1 >µ2 cases, respectively; (iii) abandonment rates θ ∈ {1,∞}, representing moderately and

extremely impatient customers, respectively. (Note that the θ =∞ case corresponds to a tandem

queueing system with no waiting room and can be solved without the derivation in this paper.)

We see from Figures 9(a, d) that when µ1 = µ2, the OptAR remains close to the BnchAR as

expected. Further, the distance between n∗
1 and ṅ1 is, at most, one. Next, we observe from Figures
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9(b, c) that when (µ1, µ2) = (2,1), the OptAR assigns more servers to Station 1 than the BnchAR,

and when (µ1, µ2) = (1,2), the OptAR assigns more servers to Station 2 than the BnchAR. This

fits our intuition discussed above.

These observations hold in other parameter settings. To substantiate this, for each

instance in {(µ1, µ2) |µ1, µ2 = 1, . . . ,10}, we derive a set of n∗
1 − ṅ1 values S (µ1, µ2) ={

n∗
1 − ṅ1

∣∣∣N ∈
{⌊

1
2

(
λ1
µ1

+ λ1
µ2

)⌋
, . . . ,

⌈
3
2

(
λ1
µ1

+ λ1
µ2

)⌉}
and θ ∈ {1, . . . ,10,∞}

}
; we then record the

mean, minimum, and maximum of set S (µ1, µ2) in Table 1. Recall that n∗
1 is an integer, while ṅ1

may be a fraction, so n∗
1 − ṅ1 may be a fraction.

µ1\µ2 1 2 3 4 5 6 7 8 9 10

1 −0.30−1 −1.8−0.3
−3.7 −2.3−0.5

−4.5 −2.5−0.6
−5.2 −2.6−0.7

−5.3 −2.6−0.6
−5.3 −2.6−0.6

−5.5 −2.6−0.6
−5.6 −2.6−0.6

−5.5 −2.5−0.6
−5.3

2 1.43.30.3 −0.20.5−0.5 −0.70.2−1.6 −1.10−2.3 −1.30−2.6 −1.4−0.3
−3.0 −1.4−0.1

−3.3 −1.5−0.2
−3.4 −1.5−0.3

−3.5 −1.5−0.2
−3.3

3 1.94.50.5 0.51.4−0.2 −0.20.5−0.5 −0.40.3−1.1 −0.60.3−1.5 −0.80−2 −0.90−1.9 −0.90−2.4 −10−2.3 −10.1−2.5

4 2.15.20.4 0.92.30 0.31−0.3 −0.20.5−0.5 −0.30.4−1 −0.40.2−1.2 −0.60.3−1.4 −0.60−1.7 −0.70.2−1.5 −0.70.1−2

5 2.15.20.3 1.02.60 0.51.4−0.1 0.10.8−0.4 −0.20.5−0.5 −0.20.5−0.8 −0.30.3−1.1 −0.40.3−1.3 −0.50.2−1.3 −0.50−1.3

6 2.25.30.3 1.130.3 0.61.70 0.31−0.2 0.10.5−0.5 −0.10.5−0.5 −0.20.4−0.8 −0.20.4−0.9 −0.30.4−1 −0.40.3−1.1

7 2.25.50.3 1.22.80.1 0.71.90 0.51.3−0.1 0.20.8−0.3 0.20.6−0.4 −0.10.5−0.5 −0.10.3−0.7 −0.20.4−0.9 −0.30.3−0.9

8 2.25.60.3 1.33.40.2 0.81.90 0.51.30 0.31.1−0.3 0.20.7−0.3 0.10.5−0.3 −0.10.5−0.5 00.4−0.7 −0.20.3−0.8

9 2.15.40.3 1.33.30.1 0.82.30 0.61.5−0.2 0.41.2−0.2 0.20.8−0.2 0.10.6−0.4 00.4−0.4 −0.10.5−0.5 00.4−0.7

10 2.15.30.3 1.33.20.2 0.92.2−0.1 0.61.6−0.1 0.51.30 0.31−0.3 0.20.8−0.3 0.10.7−0.3 00.3−0.4 −0.10.5−0.5

Table 1 Mean, minimum, and maximum, MeanMax
Min of n∗

1 − ṅ1 under any θ ∈ {1, . . . ,10,∞} and

N ∈
{⌊

1
2

(
λ
µ1

+ λ
µ2

)⌋
, . . . ,

⌈
3
2

(
λ
µ1

+ λ
µ2

)⌉}
for λ= 40 and (µ1, µ2)∈ {(µ1, µ2) |µ1, µ2 = 1, . . . ,10}.

We see from Table 1 that

• When µ1 = µ2 (i.e., all diagonal instances), all means are below zero, while all minimums and

maximums are between -1 and 0.5, so every n∗
1 − ṅ1 in the set S (µ1, µ2) is between -1 and 0.5.

Thus, we have ⌊ṅ1⌋− 1≤ n∗
1 ≤ ⌈ṅ1⌉ in this case.

• When µ1 >µ2 (i.e., all lower triangular instances), all minimums are ≥−0.5, while all means

and maximums are non-negative. This means that n∗
1 ≥ ⌊ṅ1⌋ in this case.

• When µ1 < µ2 (i.e., all upper triangular instances), all maximums are ≤ 0.5, while all means

and minimums are non-positive. Hence, in this case, n∗
1 ≤ ⌈ṅ1⌉.

We therefore define the rounded BnchAR as

[ṅ1] =


⌈ṅ1⌉ if µ1 <µ2

⌊ṅ1⌋ if µ1 ≥ µ2

, (OB.5)

and summarize the observations from Figure 9 and Table 1 as:
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Observation OA2 The relation between the rounded BnchAR and the OptAR is as follows:

(i) When µ1 = µ2, the OptAR may deviate from the rounded BnchAR by adding or removing at

most one server to the upstream Station 1.

(ii) When µ1 ̸= µ2, the OptAR may deviate from the rounded BnchAR, and this deviation always

favors the station with the higher service rate, independent of this station’s position in the tandem

queueing network.

It is interesting to note that the OptAR’s tendency to move servers to the station with higher

service rate is independent of this station’s position - it does not matter if it is upstream or

downstream.

Another interesting observation from Table 1 is that the OptAR’s deviation from the BnchAR

is not symmetrical. If we only look at means in Table 1, we see all diagonals entries are negative,

and the absolute values of the upper triangular entries are greater (by up to 0.5) than those of

the lower triangular ones. In other words, there is a small tendency for the OptAR to assign

more servers to Station 2 than it would if the derivation were symmetrical. Providing a little

more capacity to Station 2 is sensible because it reduces the loss of partially processed customers.

However, the strength of this effect is so weak (less than a single server) that it is not instrumental

in characterizing the OptAR.

We next look into the difference between the performances of the OptAR and the rounded

BnchAR. Similar to our comparison of n∗
1 and ṅ1, we first describe TP (n∗

1) and TP ([ṅ1]) as

functions of N , for λ1 = 40, θ ∈ {1,∞}, and (µ1, µ2) ∈ {(1,1) , (2,2) , (1,2) , and (2,1)}, in Figure

10. We see that (i) when µ1 = µ2, TP ([ṅ1]) is almost identical to TP (n∗
1); (ii) when µ1 ̸= µ2, there is

a visible difference between TP (n∗
1) and TP ([ṅ1]). Somewhat surprisingly, the difference between

TP (n∗
1) and TP ([ṅ1]) is relatively stable over N .

In Table 2, we list the average difference between these two policies’ performances under

N ∈
{⌊

1
2

(
λ1
µ1

+ λ1
µ2

)⌋
, . . . ,

⌈
3
2

(
λ1
µ1

+ λ1
µ2

)⌉}
and θ ∈ {1, . . . ,10,∞}, i.e., AverageN and θTP (n∗

1) −
TP ([ṅ1]), in a broader parameter setting, for any instance in {(µ1, µ2) |µ1, µ2 = 1, . . . ,10}. When

µ1 = µ2, all average differences are less than 0.025; this means that if the rounded BnchAR is

applied instead of the OptAR, the throughput will be reduced, but by less than 0.025, which is

only 0.06% of λ1. When |µ1 −µ2| increases, the difference increases, and it can be substantial. For

example, when (µ1, µ2) = (1,10), a throughput of 4.367 (i.e., 10.92% of λ1) is saved by applying

the OptAR instead of the rounded BnchAR.

These observations provide useful guidelines for optimally staffing a tandem queue service system

with impatient customers:

• When µ1 = µ2, we can apply the rounded BnchAR [ṅ1] whose performance is almost identical

to the OptAR, which is among [ṅ1]− 1, [ṅ1], and [ṅ1] + 1.

• When µ1 ̸= µ2, an exhaustive search starting from the rounded BnchAR while moving servers

to the station with the higher service rate will quickly identify the OptAR. Observation OA1

guarantees the convergence of this search method.

These guidelines significantly reduce the search space for the OptAR n∗
1, and our numerical

method can provide n∗
1 almost instantaneously for each parameter setting. Hence, for any practical

purpose, our first managerial question has been fully addressed.
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Figure 10 TP (n∗
1) and TP ([ṅ1]) as functions of N ∈

{⌊
1
2

(
λ
µ1

+ λ
µ2

)⌋
, . . . ,

⌈
3
2

(
λ
µ1

+ λ
µ2

)⌉}
under λ = 40 and

θ ∈ {1,∞} for (µ1, µ2) = (a) (1,1); (b) (1,2); (c) (2,1); (d) (2,2).

OA2.3. Optimal Staffing Scheme to Achieve a Required Throughput

In this section, we answer the second managerial question by generating the Optimal Staffing

Scheme - a table with three columns: (i) the total number of servers, N ; (ii) the OptAR n∗
1 that

maximizes throughput, given that N servers are available; (iii) the throughput under this OptAR,

TP (n∗
1).

We first introduce an algorithm to generate the Optimal Staffing Scheme for any N ∈{⌊
1
2

(
λ1
µ1

+ λ1
µ2

)⌋
, . . . ,

⌈
3
2

(
λ1
µ1

+ λ1
µ2

)⌉}
.

Algorithm OA1 Generate the Optimal Staffing Scheme Table for given λ1, µ1, µ2, and θ.

Step 1: Set N =
⌊

1
2

(
λ1
µ1

+ λ1
µ2

)⌋
.

Step 2: Set n=the rounded BnchAR given in (OB.5).

Step 3: If µ1 = µ2, go to Step 4; otherwise go to Step 6.

Step 4: Derive TP (i) for i∈ {n− 1, n,n+1}, using the methods from Sections 3 and A1.6.

Step 5: Set n∗
1 = argmaxi∈{n−1,n,n+1} TP (i) and go to Step 9.

Step 6: Set ∆=


−1 if µ1 <µ2

1 if µ1 >µ2

.

Step 7: Derive TP (n) and TP (n+∆), using the methods from Sections 3 and A1.6.

Step 8: If TP (n)<TP (n+∆), set n= n+∆ and go to Step 7; otherwise set n∗
1 = n.

Step 9: Record [N,n∗
1, TP (n∗

1)] as a new row of the Optimal Staffing Scheme Table.

Step 10: Set N =N +1.
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µ1\µ2 1 2 3 4 5 6 7 8 9 10

1 0.001 0.466 1.057 1.607 2.136 2.677 3.140 3.610 4.015 4.367

2 0.281 0.001 0.369 0.653 1.161 1.493 2.072 2.322 2.852 3.014

3 0.762 0.234 0.003 0.370 0.713 0.848 1.416 1.731 1.820 2.531

4 1.243 0.474 0.260 0.005 0.399 0.571 1.053 1.027 1.560 1.768

5 1.717 0.935 0.572 0.307 0.008 0.409 0.815 0.949 1.311 1.053

6 2.219 1.235 0.686 0.466 0.330 0.011 0.555 0.663 0.846 1.371

7 2.665 1.798 1.245 0.928 0.711 0.481 0.015 0.566 0.786 1.262

8 3.124 2.029 1.547 0.893 0.839 0.591 0.514 0.019 0.967 0.964

9 3.514 2.553 1.601 1.399 1.213 0.771 0.724 0.918 0.018 1.237

10 3.843 2.677 2.331 1.626 0.956 1.303 1.195 0.913 1.194 0.021

Table 2 Average TP (n∗
1)−TP ([ṅ1]) under any θ ∈ {1, . . . ,10,∞} and

N ∈
{⌊

1
2

(
λ
µ1

+ λ
µ2

)⌋
, . . . ,

⌈
3
2

(
λ
µ1

+ λ
µ2

)⌉}
for λ= 40 and (µ1, µ2)∈ {(µ1, µ2) |µ1, µ2 = 1, . . . ,10}.

Step 11: If N ≤
⌈

3
2

(
λ1
µ1

+ λ1
µ2

)⌉
, go to Step 2; otherwise STOP.

We run Algorithm OA1 on a 64-bit desktop with an Intel Hexa-Core E5-1650 @ 3.5GHz processor.

The run time of this algorithm depends on the range of N . For N ≤ 150, each instance completes

within 15 seconds, while for N close to 200, each instance takes up to 30 seconds. For example, for

λ1 = 100, (µ1, µ2) = (1,2), and θ= 1, where N ∈ {75, . . . ,224}, we use Algorithm OA1 to generate

the Optimal Staffing Scheme. The algorithm completes in 45 minutes for 150 instances.

The Optimal Staffing Scheme generated by Algorithm OA1 is listed in Table 3 (due to page

limits, we only list N ∈ {76, . . . ,200}). Note that the total number of servers N covers a wide

range: from scarce capacity, i.e., N = 76 where more than 50% of customers abandon, to plenty of

capacity, i.e., N = 200 where less than 0.02% of customers abandon.

Using this table, answering the second managerial question is straightforward. For example, if the

throughput target is 50, i.e., at least 50% of the customers finish service without abandonment, then

at least 80 servers are required, and 52 of them should be assigned to Station 1. If the throughput

target is 99, then at least 172 servers are needed, with 112 assigned to Station 1. Clearly, for any

other parameter settings, a similar Optimal Staffing Scheme can easily be produced.
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N n1* TP N n1* TP N n1* TP N n1* TP N n1* TP
76 50 47.5398 101 66 63.7577 126 83 79.9157 151 99 93.9103 176 115 99.4380
77 50 48.2017 102 67 64.4007 127 83 80.5615 152 100 94.3047 177 115 99.5054
78 51 48.8606 103 67 65.0277 128 84 81.2061 153 100 94.7047 178 116 99.5648
79 52 49.4764 104 68 65.7053 129 85 81.8149 154 101 95.0836 179 116 99.6154
80 52 50.1434 105 69 66.3465 130 85 82.4565 155 102 95.4249 180 117 99.6651
81 53 50.8000 106 69 66.9778 131 86 83.0890 156 102 95.7806 181 118 99.7057
82 54 51.4142 107 70 67.6532 132 87 83.6849 157 103 96.1035 182 118 99.7438
83 54 52.0860 108 71 68.2927 133 87 84.3189 158 103 96.3996 183 119 99.7772
84 55 52.7403 109 71 68.9279 134 88 84.9348 159 104 96.7016 184 119 99.8051
85 56 53.3530 110 72 69.6011 135 89 85.5134 160 105 96.9697 185 120 99.8324
86 56 54.0294 111 73 70.2387 136 89 86.1350 161 105 97.2245 186 121 99.8542
87 57 54.6816 112 73 70.8776 137 90 86.7292 162 106 97.4712 187 121 99.8746
88 58 55.2928 113 74 71.5484 138 91 87.2851 163 107 97.6877 188 122 99.8922
89 58 55.9736 114 75 72.1839 139 91 87.8888 164 107 97.9028 189 122 99.9067
90 59 56.6238 115 75 72.8260 140 92 88.4551 165 108 98.0988 190 123 99.9207
91 60 57.2336 116 76 73.4940 141 92 88.9906 166 108 98.2711 191 124 99.9317
92 60 57.9186 117 77 74.1269 142 93 89.5620 167 109 98.4467 192 124 99.9420
93 61 58.5669 118 77 74.7718 143 94 90.0940 168 110 98.5981 193 125 99.9506
94 61 59.1802 119 78 75.4363 144 94 90.6040 169 110 98.7387 194 125 99.9578
95 62 59.8643 120 79 76.0657 145 95 91.1353 170 111 98.8720 195 126 99.9645
96 63 60.5107 121 79 76.7124 146 96 91.6267 171 112 98.9855 196 127 99.9696
97 63 61.1289 122 80 77.3722 147 96 92.1051 172 112 99.0981 197 127 99.9746
98 64 61.8107 123 81 77.9969 148 97 92.5902 173 113 99.1965 198 128 99.9786
99 65 62.4554 124 81 78.6441 149 98 93.0353 174 113 99.2833 199 128 99.9819
100 65 63.0781 125 82 79.2976 150 98 93.4766 175 114 99.3676 200 129 99.9849

Table 3 Optimal staffing scheme for λ= 100, (µ1, µ2) = (1,2), and θ= 1.


